× Didn't find what you were looking for? Ask a question
Top Posters
Since Sunday
d
4
N
3
3
R
3
k
3
o
3
Z
3
j
3
s
3
d
3
J
3
1
3
New Topic  
bwelly bwelly
wrote...
Posts: 2
Rep: 0 0
11 years ago
I observed the skin of my grandfather. It has become wrinkled and creased.

What are the biological changes in their bodies which causes such a change.

I know from biology that it has something to do with senescence. But what exactly?
Read 202 times
2 Replies

Related Topics

Replies
wrote...
11 years ago
an people become wrinkled and creased because of their hormone changes i think.
wrote...
11 years ago
Simple answer: Keratin

Detailed answer:

The skin's surface is covered with flattened cells rich in the protein keratin that makes our skin tough and water-resistant. These outer cells gradually slough off and are replaced by an underlying generation of new cells. But this outer layer, the epidermis, is not where age-related wrinkling happens---

Underneath the epidermis is a thicker layer, the dermis, composed of structural proteins that give skin strength and elasticity. These are mostly collagen fibers (80%) woven into a meshwork with elastin and other proteins to create a resilient biological polymer. As we age the amount of collagen declines, and both collagen and elastin fibers become looser, thicker, clumped, and even crosslinked to other fibers. The result is brittle and less elastic skin, leading to sagging and wrinkling.

What causes these chemical changes? Free radicals are electron-hungry molecules or atoms (oxidants) that are especially dangerous because they trigger a cascade of changes to biological molecules when electrons are pulled from one molecule to another, altering chemical structures and, hence, biological functions. Free radicals are byproducts of our energy metabolism and they are also generated by environmental influences, like air pollution, smoking, and ultraviolet radiation in sunlight.

We have antioxidant enzymes and molecules that protect us from free radicals, like vitamin C, vitamin E, and carotenoid pigments (from which vitamin A is formed). Carotenoids are the red, orange, and yellow pigments of plants. Tomatoes, carrots, and peppers are good examples, as well as fall leaf colors. We only get carotenoids from our foods, mostly fruits and vegetables. In spite of antioxidants, free radical damage occurs nevertheless. Another biological threat from energy metabolism is when glucose, a key fuel for our bodies, facilitated by free-radicals, crosslinks with proteins to form plastic-like molecules. These complexes, called age-related glycation end-products (AGEs), irreversibly alter skin proteins so that they are more brittle and less elastic. This is the same chemical process seen in the browning of cooked foods. That's right, our bodies cook as we age!

Skin's role in providing a barrier between the body and the environment makes it especially vulnerable to high-energy radiation from the sun. This is THE crucial lifestyle factor accelerating wrinkling of skin. Ultraviolet radiation causes DNA damage, damage to other molecules in the skin, and the generation of, ugh, free radicals. Accumulated damage to DNA in skin cells can lead to cancer, not a trivial concern. The skin has mechanisms to protect itself from damage and to repair damage that does occur. For instance, exposure to sunlight triggers tanning. Cells in the epidermis produce more melanin, a dark pigment that absorbs ultraviolet rays and dissipates their energy before they damage the skin. Human populations from regions with greater solar radiation have more melanin in their skin, a good example of evolutionary adaptation.

Isn't the body able to repair damaged proteins? Yes, but the repaired proteins do not work quite as well as before. Free-radical damage to DNA and chemical errors in repair of this damage likely contribute to the age-related decline in the fidelity of protein repair. And dermal proteins last a very long time - a recent estimate is that skin collagen has a half-life of about 15 years (so, in 15 years half of the collagen molecules now in your skin will still be there; the other half will have been broken down and replaced with new collagen). Any chemical changes to skin proteins will be with you for a long while.

So our skin wrinkles as we age because its structural proteins are gradually altered by the combined action of free radicals and glucose from the body's own energy metabolism and from the environment. This is a common feature of aging throughout the body. Why do different organisms age at different rates? This is the riddle of aging that I will not delve into here. This and other evidence shows that aging is under genetic control of repair mechanisms, but lifestyle influences can also be important. So remember that wrinkling of skin is under your control too. Prudent measures to protect your skin from ultraviolet rays will keep your skin from aging beyond your years.
New Topic      
Explore
Post your homework questions and get free online help from our incredible volunteers
  1526 People Browsing
Related Images
  
 986
  
 1295
  
 654