× Didn't find what you were looking for? Ask a question
Top Posters
Since Sunday
a
5
k
5
c
5
B
5
l
5
C
4
s
4
a
4
t
4
i
4
r
4
r
4
New Topic  
bio_man bio_man
wrote...
Administrator
Educator
Posts: 33241
5 years ago
If you've been given:

\(x\cdot \sqrt{x}\)

You have to first change it into fractional exponents:

\(x\cdot x^{\frac{1}{2}}\)

Then use the exponent laws to combine the two factors:

\(x^{1+\frac{1}{2}}\)

\(x^{\frac{3}{2}}\)

Apply to the definition of a derivative:

\(\lim _{x\rightarrow 0}\ \frac{\left(x+\Delta x\right)^{\frac{3}{2}}-x^{\frac{3}{2}}}{\Delta x}\)

Now the complicated part. We will use this relationship first called a difference of squares:

\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

Set a and b:

\(a=\left(x+\Delta x\right)^{\frac{3}{2}}\)

Square both sides

\(a^2=\left(x+\Delta x\right)^3\)

Now b:

\(b=x^{\frac{3}{2}}\)

Square both sides:

\(b^2=x^3\)

Back to the difference of squares, rearrange for a minus b:

\(a-b=\frac{a^2-b^2}{a+b}\)

Substitute what we set a and b into the equation above:

\(\frac{a^2-b^2}{a+b}\rightarrow \ \frac{\left[\left(x+\Delta x\right)^{\frac{3}{2}}\right]^2-\left[x^{\frac{3}{2}}\right]^2}{\left[\left(x+\Delta x\right)^{\frac{3}{2}}+x^{\frac{3}{2}}\right]}\)

Now apply this into the top part of the limit!

\(\lim _{x\rightarrow 0}\ \frac{\frac{\left[\left(x+\Delta x\right)^{\frac{3}{2}}\right]^2-\left[x^{\frac{3}{2}}\right]^2}{\left[\left(x+\Delta x\right)^{\frac{3}{2}}+x^{\frac{3}{2}}\right]}}{\Delta x}\)

Simplify a bit:

\(\lim _{x\rightarrow 0}\ \frac{\left[\left(x+\Delta x\right)^{\frac{3}{2}}\right]^2-\left[x^{\frac{3}{2}}\right]^2}{\left[\left(x+\Delta x\right)^{\frac{3}{2}}+x^{\frac{3}{2}}\right]\Delta x}\)

and some more...

\(\lim _{x\rightarrow 0}\ \frac{\left(x+\Delta x\right)^3-x^3}{\left[\left(x+\Delta x\right)^{\frac{3}{2}}+x^{\frac{3}{2}}\right]\Delta x}\)

Now we have a difference of cubes on this top Face with Cold Sweat So we still can't take the limit. Here's what the difference of squares formula looks like:

Recall the difference of squares formula:

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

Once again, we'll set a and b:

\(a=\left(x+\Delta x\right)\)

\(b=x\)

Apply the new a and b into the formula:

\(a^3-b^3=\left(x+\Delta x-x\right)\left(\left(x+\Delta x\right)^2+\left(x+\Delta x\right)x+x^2\right)\)

Substitute the right side back into the limit!

\(\lim _{x\rightarrow 0}\ \frac{\left(x+\Delta x-x\right)\left(\left(x+\Delta x\right)^2+\left(x+\Delta x\right)x+x^2\right)}{\left[\left(x+\Delta x\right)^{\frac{3}{2}}+x^{\frac{3}{2}}\right]\Delta x}\)

Rearrange and simplify:

\(\lim _{x\rightarrow 0}\ \frac{\left(\Delta x\right)\left(\left(x+\Delta x\right)^2+x^2+\Delta x\cdot x+x^2\right)}{\left[\left(x+\Delta x\right)^{\frac{3}{2}}+x^{\frac{3}{2}}\right]\Delta x}\)

The delta x now cancels out:

\(\lim _{x\rightarrow 0}\ \frac{\left(x+\Delta x\right)^2+x^2+\Delta x\cdot x+x^2}{\left[\left(x+\Delta x\right)^{\frac{3}{2}}+x^{\frac{3}{2}}\right]}\)

Apply the limit as x approaches 0:

\(=\frac{x^2+x^2+x^2}{\left(x\right)^{\frac{3}{2}}+x^{\frac{3}{2}}}\)

Simplify more:

\(=\frac{3x^2}{2\left(x\right)^{\frac{3}{2}}}\)

Simplify more to eventually get

\(\frac{3\sqrt{x}}{2}\)

 Slight Smile
Read 227 times
1 Reply

Related Topics

Replies
bio_man Author
wrote...
Educator
5 years ago
If you want find out what the derivative is when x = 6, you set the x variable in the derivative equal to 6.

\(\left[\frac{d}{dx}\right]_{x=6}=\frac{3}{2}\sqrt{x}\)

\(\frac{3}{2}\sqrt{6}=3.67\)



If you want x when the derivative is 6:

\(6=\frac{3}{2}\sqrt{x}\)

Multiply both sides by 2, divide by 3, square both sides:

\(\left(\frac{6\left(2\right)}{3}\right)^2=x=16\)
New Topic      
Explore
Post your homework questions and get free online help from our incredible volunteers
  1333 People Browsing
 122 Signed Up Today
Related Images
  
 64
  
 63
  
 366
Your Opinion
Which of the following is the best resource to supplement your studies:
Votes: 249