Ask a Question
  
  
  
Top Posters
Since Sunday
7
5
4
4
4
4
4
4
4
4
4
4
New Topic  
wrote...
Administrator
Educator
Posts: 23920
5 months ago
Find the derivative of this by the delta method

\(y=x^2+3x-\frac{2}{x}\)

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\left(x^2+3x-\frac{2}{x}\right)\)

Apply \(x-\Delta x\) into where you see x's:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{\left(x+\Delta x\right)^2+3x+3\Delta x-\frac{2}{x+\Delta x}-\left(x^2+3x-\frac{2}{x}\right)}{\Delta x}\)

Distribute the negative where you see: \(-\left(x^2+3x-\frac{2}{x}\right)\)

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{\left(x+\Delta x\right)^2+3x+3\Delta x-\frac{2}{x+\Delta x}-x^2-3x+\frac{2}{x}}{\Delta x}\)

Expand \(\left(x+\Delta x\right)^2\) in the numerator:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{x^2+\left(2x\cdot \Delta x\right)+\Delta x^2+3x+3\Delta x-\frac{2}{x+\Delta x}-x^2-3x+\frac{2}{x}}{\Delta x}\)

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{2x\cdot \Delta x+\Delta x^2+3\Delta x-\frac{2}{x+\Delta x}+\frac{2}{x}}{\Delta x}\)

Combine the fractions found in the numerator:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{2x\cdot \Delta x+\Delta x^2+3\Delta x+\frac{-2x+2\left(x+\Delta x\right)}{\left(x+\Delta x\right)x}}{\Delta x}\)

Now combine all the terms in the numerator:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{\frac{x\left(x+\Delta x\right)\left(2x\cdot \Delta x+\Delta x^2+3\Delta x\right)-2x+2\left(x+\Delta x\right)}{\left(x+\Delta x\right)x}}{\Delta x}\)

Simplify the fractions more:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{x\left(x+\Delta x\right)\left(2x\cdot \Delta x+\Delta x^2+3\Delta x\right)-2x+2\left(x+\Delta x\right)}{x\left(x+\Delta x\right)\Delta x}\)

Expand the numerator:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{\left(x^2+x\cdot \Delta x\right)\left(2x\cdot \Delta x+\Delta x^2+3\Delta x\right)-2x+2x+2\Delta x}{x\left(x+\Delta x\right)\Delta x}\)

Simplify and expand:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{2x^3\Delta x+\Delta x^2x^2+3\Delta x\cdot x^2+2x^2\Delta x^2+\Delta x^3\cdot x+3\Delta x^2\cdot x+2\Delta x}{x\left(x+\Delta x\right)\Delta x}\)

Now give the denominator to each numerator:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{2x^3\Delta x}{x\left(x+\Delta x\right)\Delta x}+\frac{\Delta x^2x^2}{x\left(x+\Delta x\right)\Delta x}+\frac{3\Delta x\cdot x^2}{x\left(x+\Delta x\right)\Delta x}+\frac{2x^2\Delta x^2}{x\left(x+\Delta x\right)\Delta x}+\frac{\left(\Delta x^3\cdot x\right)}{x\left(x+\Delta x\right)\Delta x}+\frac{\left(3\Delta x^2\cdot x\right)}{x\left(x+\Delta x\right)\Delta x}+\frac{2\Delta x}{x\left(x+\Delta x\right)\Delta x}\)

Simplify each fraction:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{2x^2}{\left(x+\Delta x\right)}+\frac{\Delta x\cdot x}{\left(x+\Delta x\right)}+\frac{3x}{\left(x+\Delta x\right)}+\frac{4x\cdot \Delta x}{\left(x+\Delta x\right)\Delta x}+\frac{\Delta x^2}{\left(x+\Delta x\right)}+\frac{3\Delta x}{x\left(x+\Delta x\right)}+\frac{2}{x\left(x+\Delta x\right)}\)

Take the limit of EACH fraction:

\(\frac{dy}{dx}=2x+0+3+0+0+0+\frac{2}{x^2}\)

One last simplification:

\(\frac{dy}{dx}=2x+3+\frac{2}{x^2}\)

Finished!
Read 97 times
The best way to say thank you is with a positive review:

  https://trustpilot.com/review/biology-forums.com 

Your support goes a long way!


Make a note request here
Related Topics
New Topic      
Hold tight!  A Bio Forums Expert has been contacted to start answering this thread.
Explore
Post your homework questions and get free online help from our incredible volunteers.
Learn More
Improve Grades
Help Others
Save Time
Accessible 24/7
  152 People Browsing
 124 Signed Up Today
Related Images
 3233
 72
 107
Your Opinion
Who's your favorite biologist?
Votes: 29