× Didn't find what you were looking for? Ask a question
  
  
Top Posters
Since Sunday
6
l
6
5
n
5
N
5
m
5
j
4
s
4
4
c
4
r
4
m
4
New Topic  
bio_man bio_man
wrote...
Administrator
Educator
Posts: 25302
A year ago
Find the derivative of this by the delta method

\(y=x^2+3x-\frac{2}{x}\)

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\left(x^2+3x-\frac{2}{x}\right)\)

Apply \(x-\Delta x\) into where you see x's:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{\left(x+\Delta x\right)^2+3x+3\Delta x-\frac{2}{x+\Delta x}-\left(x^2+3x-\frac{2}{x}\right)}{\Delta x}\)

Distribute the negative where you see: \(-\left(x^2+3x-\frac{2}{x}\right)\)

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{\left(x+\Delta x\right)^2+3x+3\Delta x-\frac{2}{x+\Delta x}-x^2-3x+\frac{2}{x}}{\Delta x}\)

Expand \(\left(x+\Delta x\right)^2\) in the numerator:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{x^2+\left(2x\cdot \Delta x\right)+\Delta x^2+3x+3\Delta x-\frac{2}{x+\Delta x}-x^2-3x+\frac{2}{x}}{\Delta x}\)

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{2x\cdot \Delta x+\Delta x^2+3\Delta x-\frac{2}{x+\Delta x}+\frac{2}{x}}{\Delta x}\)

Combine the fractions found in the numerator:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{2x\cdot \Delta x+\Delta x^2+3\Delta x+\frac{-2x+2\left(x+\Delta x\right)}{\left(x+\Delta x\right)x}}{\Delta x}\)

Now combine all the terms in the numerator:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{\frac{x\left(x+\Delta x\right)\left(2x\cdot \Delta x+\Delta x^2+3\Delta x\right)-2x+2\left(x+\Delta x\right)}{\left(x+\Delta x\right)x}}{\Delta x}\)

Simplify the fractions more:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{x\left(x+\Delta x\right)\left(2x\cdot \Delta x+\Delta x^2+3\Delta x\right)-2x+2\left(x+\Delta x\right)}{x\left(x+\Delta x\right)\Delta x}\)

Expand the numerator:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{\left(x^2+x\cdot \Delta x\right)\left(2x\cdot \Delta x+\Delta x^2+3\Delta x\right)-2x+2x+2\Delta x}{x\left(x+\Delta x\right)\Delta x}\)

Simplify and expand:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{2x^3\Delta x+\Delta x^2x^2+3\Delta x\cdot x^2+2x^2\Delta x^2+\Delta x^3\cdot x+3\Delta x^2\cdot x+2\Delta x}{x\left(x+\Delta x\right)\Delta x}\)

Now give the denominator to each numerator:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{2x^3\Delta x}{x\left(x+\Delta x\right)\Delta x}+\frac{\Delta x^2x^2}{x\left(x+\Delta x\right)\Delta x}+\frac{3\Delta x\cdot x^2}{x\left(x+\Delta x\right)\Delta x}+\frac{2x^2\Delta x^2}{x\left(x+\Delta x\right)\Delta x}+\frac{\left(\Delta x^3\cdot x\right)}{x\left(x+\Delta x\right)\Delta x}+\frac{\left(3\Delta x^2\cdot x\right)}{x\left(x+\Delta x\right)\Delta x}+\frac{2\Delta x}{x\left(x+\Delta x\right)\Delta x}\)

Simplify each fraction:

\(\frac{dy}{dx}=\lim _{\Delta x\rightarrow 0}\ \frac{2x^2}{\left(x+\Delta x\right)}+\frac{\Delta x\cdot x}{\left(x+\Delta x\right)}+\frac{3x}{\left(x+\Delta x\right)}+\frac{4x\cdot \Delta x}{\left(x+\Delta x\right)\Delta x}+\frac{\Delta x^2}{\left(x+\Delta x\right)}+\frac{3\Delta x}{x\left(x+\Delta x\right)}+\frac{2}{x\left(x+\Delta x\right)}\)

Take the limit of EACH fraction:

\(\frac{dy}{dx}=2x+0+3+0+0+0+\frac{2}{x^2}\)

One last simplification:

\(\frac{dy}{dx}=2x+3+\frac{2}{x^2}\)

Finished!
Read 210 times
The best way to say thank you is with a positive review:

  Click here to review us!

Related Topics

New Topic      
Explore
Post your homework questions and get free online help from our incredible volunteers.
Learn More
Improve Grades
Help Others
Save Time
Accessible 24/7
  108 People Browsing
 166 Signed Up Today
Related Images
 121
 74