Ask a Question
  
  
  
Top Posters
Since Sunday
11
11
10
10
10
10
9
9
9
9
9
9
New Topic  
wrote...
Administrator
Educator
Posts: 23921
5 months ago


From the image, your function is: \(y=\frac{1}{4}\tan ^{-1}\left(\frac{4\sin x}{3+5\cos x}\right)\)

Start by multiplying both sides by \(4\):

\(4y=\tan ^{-1}\left(\frac{4\sin x}{3+5\cos x}\right)\)

That tangent of both sides:

\(\tan \left(4y\right)=\tan \left(\tan ^{-1}\left(\frac{4\sin x}{3+5\cos x}\right)\right)\)

This becomes:

\(\tan \left(4y\right)=\frac{4\sin x}{3+5\cos x}\)

Now differentiate implicitly with respect to \(x\). And recall that: \(\frac{d}{dx}\tan u=\sec ^2u\cdot \frac{du}{dx}\)

Applying this to the left side ...

\(\sec ^2\left(4y\right)\cdot 4\ \frac{dy}{dx}=\frac{4\sin x\left(-5\sin x\right)-4\cos x\left(3+5\cos x\right)}{\left(3+5\cos x\right)^2}\)

Solve for \(\frac{dy}{dx}\):

\(\frac{dy}{dx}=\frac{4\sin x\left(-5\sin x\right)-4\cos x\left(3+5\cos x\right)}{4\ \sec ^2\left(4y\right)\left(3+5\cos x\right)^2}\)

Simplify the numerator:

\(\frac{dy}{dx}=\frac{-20\sin ^2x-12\cos x-20\cos ^2x}{4\ \sec ^2\left(4y\right)\left(3+5\cos x\right)^2}\)

Simplify more:

\(\frac{dy}{dx}=\frac{-20\left(\sin ^2x+\cos ^2\right)-12\cos x}{4\ \sec ^2\left(4y\right)\left(3+5\cos x\right)^2}\)

Recall that: \(\sin ^2x+\cos ^2x=1,\ \therefore \)

\(\frac{dy}{dx}=\frac{-5-3\cos x}{\sec ^2\left(4y\right)\left(3+5\cos x\right)^2}\)

Simplify more:

\(\frac{dy}{dx}=\frac{-1}{\sec ^2\left(4y\right)\left(3+5\cos x\right)}\)

There you go! Grinning Face
Read 153 times
The best way to say thank you is with a positive review:

  https://trustpilot.com/review/biology-forums.com 

Your support goes a long way!


Make a note request here
Related Topics
New Topic      
Hold tight!  A Bio Forums Expert has been contacted to start answering this thread.
Explore
Post your homework questions and get free online help from our incredible volunteers.
Learn More
Improve Grades
Help Others
Save Time
Accessible 24/7
  160 People Browsing
 120 Signed Up Today
Related Images
 584
 79
 61