× Didn't find what you were looking for? Ask a question
  
  
Top Posters
Since Sunday
6
l
6
5
n
5
N
5
m
5
j
4
s
4
4
c
4
r
4
m
4
New Topic  
bio_man bio_man
wrote...
Administrator
Educator
Posts: 25302
A year ago


From the image, your function is: \(y=\frac{1}{4}\tan ^{-1}\left(\frac{4\sin x}{3+5\cos x}\right)\)

Start by multiplying both sides by \(4\):

\(4y=\tan ^{-1}\left(\frac{4\sin x}{3+5\cos x}\right)\)

That tangent of both sides:

\(\tan \left(4y\right)=\tan \left(\tan ^{-1}\left(\frac{4\sin x}{3+5\cos x}\right)\right)\)

This becomes:

\(\tan \left(4y\right)=\frac{4\sin x}{3+5\cos x}\)

Now differentiate implicitly with respect to \(x\). And recall that: \(\frac{d}{dx}\tan u=\sec ^2u\cdot \frac{du}{dx}\)

Applying this to the left side ...

\(\sec ^2\left(4y\right)\cdot 4\ \frac{dy}{dx}=\frac{4\sin x\left(-5\sin x\right)-4\cos x\left(3+5\cos x\right)}{\left(3+5\cos x\right)^2}\)

Solve for \(\frac{dy}{dx}\):

\(\frac{dy}{dx}=\frac{4\sin x\left(-5\sin x\right)-4\cos x\left(3+5\cos x\right)}{4\ \sec ^2\left(4y\right)\left(3+5\cos x\right)^2}\)

Simplify the numerator:

\(\frac{dy}{dx}=\frac{-20\sin ^2x-12\cos x-20\cos ^2x}{4\ \sec ^2\left(4y\right)\left(3+5\cos x\right)^2}\)

Simplify more:

\(\frac{dy}{dx}=\frac{-20\left(\sin ^2x+\cos ^2\right)-12\cos x}{4\ \sec ^2\left(4y\right)\left(3+5\cos x\right)^2}\)

Recall that: \(\sin ^2x+\cos ^2x=1,\ \therefore \)

\(\frac{dy}{dx}=\frac{-5-3\cos x}{\sec ^2\left(4y\right)\left(3+5\cos x\right)^2}\)

Simplify more:

\(\frac{dy}{dx}=\frac{-1}{\sec ^2\left(4y\right)\left(3+5\cos x\right)}\)

There you go! Grinning Face
Read 279 times
The best way to say thank you is with a positive review:

  Click here to review us!

Related Topics

New Topic      
Explore
Post your homework questions and get free online help from our incredible volunteers.
Learn More
Improve Grades
Help Others
Save Time
Accessible 24/7
  110 People Browsing
 166 Signed Up Today
Related Images
 84
 72
 99