Top Posters
Since Sunday
A free membership is required to access uploaded content. Login or Register.

Induction electromagnetique.docx

Uploaded: 7 years ago
Contributor: JoshSchnapp
Category: Electromagnetic Theory
Type: Other
Rating: N/A
Helpful
Unhelpful
Filename:   Induction electromagnetique.docx (1.38 MB)
Page Count: 18
Credit Cost: 2
Views: 254
Last Download: N/A
Transcript
Le phénomène d’induction électromagnétique Remarque : Le nom officiel du champ est l’« induction magnétique », qui peut porter confusion avec le nom du phénomène qu’on va étudier. (On utilise plus couramment le champ magnétique) Mise en évidence expérimentale Circuit déplacé dans un champ invariant (g : galvanomètre, détecte un courant) Lorsqu’on déplace la spire, g varie : Plus l’aimant est déplacé rapidement, plus g varie fort. Dès qu’on arrête l’aimant, g s’arrête. Lorsqu’on change le sens du déplacement, la variation se fait dans l’autre sens. Lorsqu’on inverse les pôles, tout est inversé. Roue de Barlow : Quand la roue tourne, g varie, et on a les mêmes phénomènes (selon la vitesse ou le sens de rotation) Circuit fixe dans un champ variable On déplace cette fois l’aimant. On observe les mêmes phénomènes. On fait varier I dans la bobine ; on observe le même type de phénomène. Cas mixte … Conclusion On a un courant induit, même sans générateur. Ce courant dépend : Du sens de la variation/déplacement. De l’amplitude de la variation/du déplacement. De sa rapidité. Origine du courant induit Cas de Lorentz : circuit déplacé/déformé dans un champ stationnaire L’électron est alors soumis à une force de Lorentz . La composante transverse provoque un champ de Hall. La composante longitudinale provoque un déplacement de l’électron dans le fil et donc un courant. Cas de Neumann : circuit fixe dans un champ variable Le champ induit un champ , qui mettra alors en mouvement l’électron. Ainsi, on observe des phénomènes similaires selon que varie ou le circuit, mais les phénomènes ne sont pas dus à la même cause. Etude quantitative de l’induction Loi d’Ohm dans un champ magnétique Introduction On considère une distribution de charges, dans laquelle il y a n porteurs de charge q par unité de volume. On suppose ces charges initialement fixes dans R. Elles seront soumises aux forces , , et en négligeant le terme d’inertie devant ces deux termes, on aura . On aura donc un courant On considère un volume de ces porteurs : On note R* le référentiel propre de l’élément (en translation rectiligne uniforme à la vitesse par rapport à R) Loi d’Ohm dans R* Expression : En négligeant encore devant les autres termes : Donc Analyse : est colinéaire à , donc il y a dans une composante colinéaire à , et une orthogonale à qui annule . Donc , et Ordre de grandeur : en général,  : Pour un fil de section , parcouru par un courant , On aura un courant , et , donc . Et les porteurs on une vitesse moyenne  ; pour un champ , on aura . Ainsi, . Loi d’Ohm dans R. Expression : (Les chocs sont dus au mouvement des électrons par rapport au réseau) Donc en négligeant le terme inertiel : Mais , et pour un conducteur (les porteurs en trop atteignent, même en régime variable, la surface en un temps de l’ordre de ) Donc Ordre de grandeur : On a Et , Donc . Cas des circuits filiformes : théorème de Faraday Cas de Lorentz (circuit déplacé dans un champ magnétique stationnaire) Loi d’Ohm globale : On suppose stationnaire. On a Donc Soit () : Mais Donc Soit , avec Ou (on est en ARQP magnétique) Champ électromoteur de Lorentz : On pose , avec . est homogène à un champ électrique, mais n’est pas un champ électrique On dit qu’il est électromoteur car c’est comme si une force s’appliquait sur le circuit pour mettre les porteurs en mouvement. Force électromotrice d’induction : Pour tout le circuit, . Théorème de Faraday : Portion de circuit AB : On a , soit Donc Soit . Pour le circuit tout entier, Comme est stationnaire, et donc . Exemples : Déplacement d’une tige conductrice : On a Il y a de plus un champ électrique à cause des charges qui s’accumulent, jusqu’à compenser . En régime permanent, et . On a , donc on devrait avoir  : Théorème de Faraday : Calcul de  : On a donc , et . Déplacement d’un cadre rectangulaire : On a Dans les branches CB, DA, on a un effet Hall Dans les branches CD, BA, les charges + s’accumulent en bas, les – en haut. Si est uniforme, on aura une tension entre A, B, C et D, mais pas de courant () Si par exemple est décroissant dans le sens de , on aura une circulation des électrons de C vers B et donc un courant i positif (de B vers C…) : . Cas de Neumann On prend cette fois un circuit fixe dans un champ variable. On aura Loi d’Ohm globale On a Donc entre deux points A et B du circuit : Soit, en ARQP magnétique : (on a ) On retrouve donc la même loi. Champ électromoteur de Neumann : On a . C’est une partie du champ électrique. Il dépend du choix de jauge, donc on peut obtenir éventuellement des paradoxes… Force électromotrice d’induction : On a , donc ne dépend pas du choix de jauge, alors que chacun des termes indépendamment en dépend. En fait, on ne parle du cas de Neumann que lorsqu’on travaille avec un circuit entier. On a ainsi et , indépendant du choix de jauge. Théorème de Faraday : comme le circuit est fixe, On a Soit . Exemple : On a (en ARQP magnétique) On débranche le solénoïde. Ainsi, passe de I à 0. Pendant la décroissance de , on aura dans la spire. Cas général C’est lorsque le circuit se déplace dans un champ variable. On aura alors , et on aura toujours (admis). Courant et quantité d’électricité induits Courant induit : On a , donc , ce qui explique tous les résultats expérimentaux observés. Quantité d’électricité induite : Si à on a un flux , à un flux , alors la quantité de charge traversant le circuit est , indépendante de la variation de flux pendant le déplacement. Cas des courants volumiques et surfaciques Ce cas là est plus complexe : On ne peut déjà pas appliquer le théorème de Faraday. Quand on déplace un fil, on déplace en même temps la ligne de courant, alors que pour un volume ou une surface, on a un ou deux degrés de liberté supplémentaires : Exemple : Roue de Barlow : On suppose que la deuxième roue est faite de telle sorte que dès qu’un rayon quitte le mercure, le suivant arrive, afin de ne pas ouvrir le circuit. Ainsi, le deuxième circuit correspond à un circuit filiforme, et le premier surfacique. Quand la deuxième roue tourne, les lignes de courant se déplacent avec le conducteur, alors que pour le premier, en régime permanent, le trajet des électrons ne varie plus, et donc la ligne de courant n’est pas fixe par rapport au conducteur. Dans ces cas là, on est obligé de revenir aux calculs classiques : Loi de Lenz Enoncé Le phénomène d’induction agit en sens tel qu’il s’oppose aux causes qui lui ont donné naissance. Exemples Champ et flux induit On rapproche l’aimant de la spire. Ainsi, le flux créé par cet aimant va augmenter, et donc , soit . Donc la spire va créer un champ dirigé vers la gauche. Ainsi, en voulant augmenter , on a créé un champ opposé au champ extérieur. Ou, avec les flux : on aura , donc la spire tempère l’augmentation de flux. Force de Laplace induite Lorsqu’on déplace le rail, diminue, donc , et on aura un courant i positif dans le circuit. Force de Laplace induite sur la tige : Donc opposée au déplacement. Remarque : La loi de Lenz est une loi de modération, qui traduit la stabilité du système : Si on imagine un monde « anti-Lenz », on aurait par exemple pour un petit déplacement de la tige précédente une force de Laplace qui pousserait la tige encore plus… Application des phénomènes d’induction Générateurs Principe Le déplacement d’un circuit dans un champ stationnaire provoque un courant i. Exemple On a ainsi un dipôle électrocinétique : Et Où (en supposant A et B très proches) On a Donc Bilan énergétique Analyse : Lorsque le générateur est en circuit ouvert, on a . Donc Il n’y a pas de puissance électrique. Et pas non plus de force de Laplace, donc le cadre tourne sans être ralenti. En circuit fermé : On a Donc il y a une puissance électrique Mais aussi une force de Laplace induite résistance. Travail électrique fourni par le générateur au circuit extérieur : Rappel électrocinétique : On note la puissance reçue par le dipôle D. Lorsqu’une charge traverse D, elle a en A une énergie , en B une énergie Donc l’énergie varie de Donc D a reçu une énergie . Donc Ou . Pour le générateur : La puissance électrique fournie est Mais . Donc . Travail mécanique reçu par le cadre (fourni par l’opérateur) On a D’après le principe fondamental de la dynamique, , donc Donc . Mais d’après le théorème de Maxwell : ( est stationnaire) Donc . Bilan : On a perdu de l’énergie liée à la résistivité dans le cadre. Mais l’énergie mécanique est transformée intégralement en énergie électrique (puis cette énergie est perdue un peu par effet Joule) Moteurs Moteur asynchrone monophasé : On prend N spires, de résistance totale R, et d’auto-inductance L. Les vecteurs (vecteur surface) et tournent autour de . Analyse physique Si , ne vont pas à la même vitesse, le flux à travers les spires varie. La loi de Lenz indique déjà que si la spire tourne plus vite que , elle sera freinée et vice-versa. Etude du fonctionnement en régime permanent On suppose que avec . Intensité induite : Equation d’évolution : On a Et , avec . On admet (pour l’instant) que lorsqu’un circuit a une auto-inductance, . Ainsi, Où et (« glissement ») Ainsi, l’équation d’évolution donne : En régime sinusoïdal : On cherche une solution de la forme Donc en complexe , et l’équation s’écrit Moment induit : Instantané : On a Autre méthode : On a On fait varier en maintenant tout le reste fixé : et … Moyen : C'est-à-dire pour et avec un travail moteur : Fonctionnement Charge : On suppose qu’on a un moment résistant constant (plus la charge est importante, plus la résistance est importante) Evolution séculaire du rotor (c'est-à-dire du cadre) : Différents régimes : Régime permanent : Si  : pas de fonctionnement possible. Si  : un seul point de fonctionnement possible. Si  : deux régimes de fonctionnement possibles. Stabilité : Le régime à gauche est instable : Si on a un point de fonctionnement à gauche, une petite diminution de donnera , et donc , puis va chuter jusqu’à 0. Si au contraire la perturbation se fait dans le sens de l’augmentation de , va continuer à augmenter jusqu’à atteindre l’autre point de fonctionnement. Pour la raison inverse, le régime de fonctionnement à droite est stable. Condition de démarrage : Il faut pour pouvoir démarrer () Pour , il faut aider le moteur au début pour atteindre un point de fonctionnement. Evolution séculaire On a Evolution instantanée : Temps caractéristique : En régime établi : dépend de t ( varie périodiquement avec une période ) On a En régime lentement variable : On a varie avec un temps caractéristique Equation séculaire : On a Condition de démarrage : Il faut qu’à , on ait , soit On a donc une condition de démarrage plus restrictive que la condition de fonctionnement. Réalisation d’un champ tournant Bobines de Helmholtz : On suppose les bobines parcourues par un même courant . A l’intérieur, est sensiblement uniforme, et si , on aura Et si on ajoute deux autres bobines identiques orthogonalement aux autres, parcourues par un courant , on aura un champ Et donc par superposition , qui sera un champ tournant. Courants de Foucault Définition Ce sont les courants d’induction volumiques (ou surfaciques) : Pour un conducteur immobile dans un champ variable, ou en mouvement dans un champ stationnaire (ou en mouvement dans un champ variable) Effets Effet Joule : Fours à induction, cuisinières à induction : On se retrouve ici dans un cas de Neumann. Chauffage des pièces métalliques dans un moteur. Pour l’éviter, on fait un feuilletage : On coupe le cylindre en tranches dans le sens vertical, et on ajoute des feuillets isolants : Ainsi, la pièce conduit toujours dans le bon sens (vertical), mais les courants de Foucault ne passent plus. Freinage : Principe : C’est le cas de Lorentz : les forces de Laplace s’opposent au mouvement. Caractéristique : Il est d’autant plus efficace que les courants de Foucault sont importants. Pour un freinage efficace, il faut donc une vitesse plus grande. Application : poids lourds : Freins de Foucault : On produit un champ magnétique autour des disques des roues pour freiner la rotation du disque. Mais il faut en plus un frein classique (les freins de Foucault ne sont plus assez efficaces à petite vitesse) Intérêt : Le frein classique est lié au frottement, et donc diminue rapidement lorsque la température augmente. Le frein de Foucault lui n’en dépend pas (ou très peu) Compléments Résolution des problèmes d’induction Conducteurs filiformes Cas de Neumann : On a affaire à un problème d’électricité : Cas de Lorentz : On a un problème de mécanique et d’électricité (« électromécanique ») Equation électrique : On a Ou Et ou . Equation mécanique : Principe fondamental de la dynamique. Conducteurs non filiformes Loi d’Ohm locale : Equation de Maxwell–Faraday : , donc sur un contour fixe : Mouvement de charges électrostatiques Un champ variable va induire un champ , et une charge ponctuelle q sera mise en mouvement par ce champ : On utilise le principe fondamental de la dynamique : Et l’équation de Maxwell–Faraday pour déterminer  : Tige chargée dans un solénoïde infini On fait passer l’intensité de I à 0 dans le solénoïde. On observe alors une rotation de la tige. Analyse physique La tige ne se mettra pas en mouvement Ca ne peut être que sous l’action de induit par la variation de . Symétries Pour  : tout plan orthogonal à Oz est de symétrie pour , donc d’antisymétrie pour . On a , donc un plan de symétrie pour sera d’antisymétrie pour . Donc . On a en ARQP magnétique : . Calcul de . On prend un disque de rayon r centré sur l’axe : On a Donc Donc . Rotation de la tige On a , donc Puis D’après le théorème du moment cinétique, Soit Puis A , et Quand , et . On a alors . La vitesse angulaire trouvée est indépendante de la vitesse avec laquelle i passe de I à 0. Entraînement par induction La tige OA est manipulée par l’opérateur, et OA’ est libre. On commence par déplacer OA à vitesse angulaire constante. Analyse physique : Déjà, on aura une variation de flux, donc une force électromotrice. La loi de Lenz indique que OA’ va suivre OA. On est dans le cas de Lorentz. Equation électrique : On a (il n’y a pas de résistance dans le cerceau) D’après le théorème de Faraday, , et où Ainsi, Autre méthode : champ électromoteur de Lorentz : Donc Ainsi, en reportant l’expression de e : Equation mécanique : D’après le théorème du moment cinétique appliqué à par rapport à l’axe Oz, . (Tous les moments de réaction sont nuls : pour le centre, il est sur Oz, et pour le cerceau, la droite d’action passe toujours par l’axe) Calcul direct : On a Donc Puis en intégrant, On pouvait aussi utiliser le théorème des travaux virtuels : Mouvement : On a alors où . Donc où Discussion : Le résultat est déjà satisfaisant d’après l’analyse. Au bout d’un temps infini, les deux tiges vont a la même vitesse, donc , soit , et donc la deuxième tige tourne toute seule. Si la résistance est infinie, il n’y a pas de mouvement Si le champ devient très faible, on a le même effet. Lorsque , on a , donc la deuxième tige se met à tourner dès que la première démarre. Bilan énergétique : Puissance cinétique : () Puissance Joule : Puissance de l’opérateur : On applique le théorème du moment cinétique à OA : Donc (i est inversé dans OA par rapport à OA’, donc ) Donc On doit avoir , et on peut vérifier que le résultat est cohérent… A , les tiges sont au repos : Pour , on fait un mouvement quelconque avec la tige OA, et on note On cherche alors On a , donc Donc en intégrant, . Alors . En effet, en supposant que , on aurai construit un radiateur perpétuel, Ou : Si est fini non nul, alors est aussi fini..? D’où Bilan énergétique : . Mesure de tension au voltmètre On suppose que . On est ici dans un cas de Neumann. Force électromotrice, courant induit On a Donc Mesure de tension Analyse : On considère que le voltmètre est en fait un modèle qui a une résistance très importante, et qui mesure le courant (très faible pour le coup). Dans la maille  : On a . Donc Dans la maille , . On néglige devant  : On a ainsi c'est-à-dire Autre mesure de la tension On suppose que . Maille  : Maille  : Donc , d’où On trouve un résultat différent ! Supraconductivité Propriétés des supraconducteurs Résistivité nulle pour  : . Découverte en 1911 par Heike Kamerlingh Onnes. Il a découvert que pour le mercure, quand , la résistivité chutait en dessous du seuil de détection. Pour l’étain, il a trouvé Et pour , la température critique atteint Effet Meissner : Un supraconducteur expulse  : En fait, des courants sont créés à la surface de la boule et créent un champ de façon à avoir un champ nul à l’intérieur. (En fait, pénètre quand même un peu) Si , on aura Si , Et Remarque : L’effet Meissner n’est pas réservé aux supraconducteurs. Champ critique : Supraconducteur de première espèce : La température critique dépend en fait du champ , et plus précisément de l’excitation magnétique (c'est-à-dire du champ gouverné par les courants libres) Et on a la relation  : Tous les métaux sont supraconducteurs et ont ce comportement. (A quelques exceptions près, dont le Niobium) Supraconducteurs de deuxième espèce (non métaux) Ils peuvent rester supraconducteurs même pour des excitations magnétiques très supérieures à celles des conducteurs de première espèce. Leur résistivité est très faible, mais mesurable. peut pénétrer plus profondément à l’intérieur. Conduction Conducteur ordinaire : Les électrons ont un spin ½entier et obéissent donc à la statistique de Fermi–Dirac (ce sont des fermions) Supraconducteurs : Les électrons sont ici appariés : paire de Cooper. Ils ont donc un spin entier, et obéissent à la statistique de Bose–Einstein (ce sont alors des bosons) La distance entre les électrons appariés est très importante. Comment sont ils appariés alors ? En fait, l’électron qui est « devant » va modifier le réseau autour de lui. L’autre électron un peu plus loin va en fait être favorisé par cette modification et suivre l’autre sans problème. (Théorie de la supraconductivité : BCS, Bardeen Cooper Schieffer) Application Transport d’électricité Intensités plus importantes dans les machines. Stockage d’électricité (par des courants surfaciques dans les matériaux sans atténuation) Lévitation supraconductrice : On prend un aimant au dessus d’un supraconducteur. Lorsqu’on le lâche, l’aimant tombe (!), mais il va provoquer des courants sur le supraconducteur qui vont créer un champ et freiner l’aimant. Si les courants ne s’amortissent pas (supraconducteur !), l’aimant peut être freiné jusqu’à s’arrêter et rester en lévitation. Pour une boucle résistante : On a , avec Donc  : on a un courant amorti Pour une boucle supraconductrice : On a cette fois , c'est-à-dire  : on a en quelque sorte une loi de Lenz à 100%. Chute d’une tige On néglige la résistance de la tige et des rails. Si D est une résistance R. Equation électrique : Pendant , on a un flux coupé, c'est-à-dire Equation mécanique : Soit Mouvement : On a alors en remplaçant i dans l’équation : , soit Avec , Intensité : On a ainsi Bilan énergétique : Si D est une bobine d’inductance L. Equation électrique : On a , avec Donc C'est-à-dire Mais à , , Et à , et comme on a une bobine, i est continu : Donc Equation mécanique : Et , soit Bilan énergétique : Si D est un condensateur de capacité C. On obtient après calcul , c'est-à-dire un mouvement uniformément accéléré (mais moins accéléré que la chute libre) Roue de Barlow On suppose qu’à l’instant , la roue tourne à la vitesse , et que le condensateur est déchargé. A , on ferme l’interrupteur. (On considère que la roue est un conducteur parfait : ) Analyse La roue va ralentir (loi de Lenz) On est dans le cas de Lorentz d’un circuit en mouvement dans un champ stationnaire. Comme on a une résistance, l’intensité va tendre vers 0 dans le circuit. Equation mécanique D’après le théorème du moment cinétique par rapport à Oz, on a (Le calcul du moment des forces de Laplace a déjà été fait, grâce au théorème des travaux virtuels) Equation électrique On a d’après la loi des mailles : Avec : , Et De plus, d’après la loi d’ohm, , et est fini, donc On a ainsi Et donc Ainsi, C'est-à-dire en dérivant Intensité On a grâce aux deux équations : Donc où Comme , sont continus, on a à  : , . Donc , soit . Vitesse angulaire On a Donc Avec On retrouve le fait que décroît : Bêtatron On considère en coordonnées cylindriques un champ magnétique à symétrie de révolution de la forme On étudie le mouvement d’un électron, de masse m, de charge dans ce champ : il est soumis à une force de Lorentz . Champ électrique induit On a d’après les équations de Maxwell , Symétries, invariances : On a Tout plan contenant est de symétrie pour . On admet que c’est un plan d’antisymétrie pour . Ainsi, . (On ne connaît pas à priori la répartition de charges et courants) D’après l’équation de Maxwell Faraday, en faisant circuler le champ sur un contour circulaire centré sur l’axe, on a : Avec où on a noté le champ moyen sur le disque (dépend du temps et du rayon de ce disque) Ainsi, Puis Condition de trajectoire circulaire D’après le principe fondamental de la dynamique, Soit C'est-à-dire en projetant Condition nécessaire : On veut avoir Avec la première égalité, il reste juste Avec la deuxième, , soit . Donc Condition initiale : A , on doit avoir , , , . Exemple : Si on lâche la particule sans vitesse initiale, et qu’on fait en sorte d’avoir un champ magnétique vérifiant la condition voulue (au moins en ) à tout instant, la particule va accélérer… Variation de moment cinétique On a Soit Et donc Intérêt Cela permet d’accélérer une particule chargée tout en gardant une orbite fixe (par exemple dans les accélérateurs)

Related Downloads
Explore
Post your homework questions and get free online help from our incredible volunteers
  853 People Browsing
Your Opinion
What's your favorite math subject?
Votes: 315