On the Fahrenheit scale, how many degrees are there between the freezing and boiling point of water?
A) 60 degrees
B) 100 degrees
C) 180 degrees
D) 212 degrees
[Ques. 2] Another name for a machinists hammer is _____.
A) ball-peen hammer
B) claw hammer
C) veneer hammer
D) sledgehammer
[Ques. 3]
[Ques. 4] xXgl4PnROWaAA8XVOY9gEYQyG9Jic
y6devq6+vb29ubm5urq6sPHTpUWVnZ2dnZ3t7+29/+NjExEfFpwiGMZ0hIyKZNm3Qct3hE6p3f1YkbGho6d+4cOGH+4T333POgEIdXAAAgAElEQVTggw+OlI247777UMd54IEH7r33XqTcDAYDBWghISHe3t4Gg4GCOxR7xfWgAA0mBlIUK5eSkmK1WulIouWCDAS99hSmpaamIspGMI+Xi6NLrEEk7+fnh19DIIAmoqCLegOSvTyEGgCoo3aHakS8U7GQMAW+vr5paWlwRd/V73XXrjFOp/ODDz4oLy8/fPjwrl27UlJSyDfAc3J5sbCEWDnG8eBn+vj4cA9RijTXMOJr165ddXV1DQ0NFRUVx44da21tbWhoOHr06NGjR3t6enp6erZs2eLh4WGxWEg2hoWFeXl5bdy48csvv3T+36Rc/iVr2I8G+V988QVOOLNcpk6dOm7cOJ3RkwUIx40bN23atHHjxpFoQZc+ICCA3Yp5pvgUwcHBiBdatHHZ5OXtty+Hw4ExpPya/D4vEcFfaokAntixsLCw2NjYtWvXYgb5dPxJICecEHsEVXJEp9hJ8k8gEyiK4jD3oNzFu9Hs7+npGRYWtmLFivLy8s8++wyOR22+IREybNWOFOIKc6FmSr6/a8zNmzdPnz598ODB6urqhoaG559/fsmSJWg8Q2kaDAYsofTO0IJk0UbY0p1EFQuBH7SEyWRqaGioqqpqbm5ubGysrKzs6+trb29vbW3t6+vr6elpbW3t6ek5deqU3W4nIESY6ODBg5Dgd4Ok1y1tqVkyTHFDQwOmG/U32M6REEgQCBTd3d1x7yX7BzYwIzJXGBjQ8QwCZcnYUJmIBumC7iP0aWpqanZ2dnx8PDEFzRaenp5RUVGLFi1CaSYlJQVBexT4McX+/v7AVeaK4xMBVDZKAg2eLMN5EGvmW9A9Ayb5XF9fXw4DFS8fH5+YmJhnn322p6dHLTN0KpTprVu3SFar2tDq4iF5wvdRjHjM0NDQn/70p71795aXlx85cqSurm7Hjh2CQ39//6CgIHphcREhWuhFgjaAxoSeIfzz8PAoLCxsbGysqalpaGhobGysr6+vrq7u7Ozs6Ojo7Ow8evTowMBAc3NzT09Pd3f34cOHMbZRUVEi6CIxw1dfffXdnZ+/L9ft9tatW2vWrGFLmj9//rhx48TWuWLv/vvvnzBhwuTJkydOnDh27FhIYFwMGBdx7RA1JjCmTQn/XxQczcpcDcrTYmNjqT7DBaWKbenSpYWFhXFxcdTrAgyj0ZiSkpKcnMzuyUvS0tKIKebOnYt0TWBgoJeXFzEe9lmE8PC3eYIUQgFCXFaRVMQAgkNhBCirkuf7+Ph4eHjMnTvX29u7oKBg27ZtH3/8MTudroZGjUeuXr1K7vGHUWI+Zmho6OzZs3v37i0rKyM8a2trq6ur27NnT3FxMRUqBHtWqzVYW4x9JgmGNCU7uoeHh5eX11NPPdXW1lZdXV1XV1dbW1tTU9PY2HjkyJHOzs6urq6jR49yo6Ojo7u7+/jx4ydPniwoKFi2bNm5c+c4LEZqcfuucjbEU7p169bChQsZyTZ37lzs3oQJE1yzERIZ8uikSZPMZjO4pXEEn5NoiqLQyMhIsqzEV1QXMV00Pj6eWS6i16TaQLvdvmjRooKCAkJE2EsvL6/IyMj09HT6BuFm7HY7U9bi4uJSUlIISmfMmOHp6UmAJ036VA6AKI4HtXwgJF6o+KJgEisHwePl5YWb7efn5+XlRZTo7e3Nm8B+A3VfX1+Hw/HMM890dnYyz0OnBqL+EHIbA6heM9+jNeb69eufffbZ/v37q6qqysrKGhsbGxoampqaGhoa6urqXn755bS0NLLz7M2EauzfEAkEhMHBwXg4r7/+Otavvb29oqKisbGxqampo6Ojr6+vu7u7p6enr6+POLC/v7+zs7Oqqqq7u/vkyZM02qqjM9Uai+/qBOmcT6kR+eijj3BBfXx8HnzwwalTp7oiUK2MmTJlytixYydOnMieReEeURbYwxJKiYLJZKIMTaaaEmkjDIPpE5VHQJienp6Xl5eRkZGQkEBZjIeHR0hISEJCQmZmJnN54VRTU1NTUlKSkpJMJlNSUlJGRkZSUhKjLDIyMiwWi4+PDwPn4NI8PDygTOFLYVmIA/2VBWHDbbgfWBkPDw9vb298UQTC2Rfmzp1LIkR1U7HY3t7e6IK/8847H3zwAelEdBvkeuDn+L5n+cfcunXrk08+2b17d0VFxeHDhzFZTU1NnZ2dDQ0NR44cKS0tXbVqFRNIYA5wvSAwuU1qPiMjY+/evS0tLY2NjS0tLZWVlfX19WL3BgYG2tvbIWD6+vq6urqam5u7urp6e3uPHz/e0tIizbVOp1POrG6W7b9/DVup7HQ6X3nlFQDj4+NDT6CaBtTB77777ps8efKPf/zjKVOm0O3Bro+UI6lUPFLMAvGSwWCQqYBSokTpLLDJysrKycnJz88vLCxcvHhxUlIS2ocLFiwAJA6HIzc31+FwLFiwAEFR6JzExESDwZCYmGi1WrOzs8nUZ2RkPPbYY7/4xS82bNjwzDPPrFmzpqCggHoJ+Ez8TBSlYmJiAgICqJTC51SXj4/PzJkz3dzc0FAnjclH40vTmoy2lYzppvNGROJg493d3f38/BwOx/r161tbW8+dO+daDnXjxg21r+D7tcY4nc4zZ87s3r374MGDhw4dqqqqqqura21tra+vb2hoaGlp6ezsrK+v37x5c1ZWFvpouCUiwTRz5swFCxasWrXqwIEDxHs1NTXl5eXNzc0DAwPd3d29vb0dHR09PT1tbW09PT2dnZ09PT1NTU0nT55sbW3t7+9vaGjo7Oz88MMPnUrUp3oU3+E+p0YgMsPs8uXLsbGxoMjd3Z2ql5GwJ2vcuHGzZs1auHAhGhOYi7S0tOTkZOpdaPKaPXv2jBkzmKtBQTw1gPCZgYGB0GACThogoGfIZ/j4+ISHh5OcIF2BVWQaIZ8VGxtLQBgfH08FrxSI84bJycnLli1bu3btc88996tf/eqRRx6JjY0FisyrSEtLI88hCSQWDCpOMk4v+kA5OTnr1q179tlnf/GLX6xataqwsJBmYup+oIt8tOXp6cmEcArZZ86cKcO2MjMzX3311dOnT589e/YuSU39X9YYp9N59uzZw4cPHz58uKysrLS0FBxiCVtaWurq6hobGzs7O3fu3Ll8+XJ6HTjRlET4+Pi89NJLVVVVjY2NtbW1hw8fbmpq6u7uBnVYOWjPrq6u9957r6OjQ5iYgYGBlpaWY8eO9fb2trS0kIGQU3k31DHJAchRXbp06Y9//KOPj4/RaGQ6IrIUkyZNGj9+/EiV2ffff/8DDzzg7++fmpqan5/vcDiCgoJCQkJwGqFV0A7Fq4+IiJg7d+6sWbNmzpw5ZcqUyZMnT5s27cEHH0S/kMJA9kEg6u7u7uXlBVEJxRITE0NOApdVvNbY2FhGWYj+VVxcHNwsZdwo/6rjA6xWa0ZGRl5e3iOPPJKfn5+Tk5OcnJyXl7ds2TLGPFEhIL2O0dHRsDhxcXFPPfXUm2+++eKLL6KxT3kA6c2kpKT09HRk9tkmZJCwZE08PT0lt0EkiamcO3euwWAoKSk5ePDgmTNndD/W92iNcTqdV69e3bVrV3Nz87Zt26qqqggIa2trcSNra2upWYMpffbZZxHGg7k2mUw7d+6sr6+vqKiAcWlra6Oaqaurq7Ozs1tbR7VFGrC7u7u9vb2zs3NgYKCvrw9W5sSJE1LqyWRJ1e//ThY/qmqQb968uXnzZnKec+bMmTx58oQJEyjFhvCEdKEWlDTgvffeO3ny5J/85CcgISkpCY5+8eLFQnI6tMUVDDYIvMkEUPY1c+bMhx9+eNq0aVOnTp02bRqD7JGEQknArE1cBHggUBKJJDDAmEwKEOVy7CrWUpWQEjO7cOHCmJgYNKYof0tKSsrPz1++fPnq1auLi4sfe+yxxx9/fP369a+//voLL7zw85//vKCggJ792NhYJExBNZqxC7WVlpaWkZGRnp6erC1MukxrI8kBtePt7e3h4UGXCaROTEzMpk2b2tvbpcWHH47LiXukYFUGlTudTt2oVpb6c4ti4LfkiI25devW+fPn9+7dW1FRcejQobKysurq6sOHD5Ojr6ysrKqqampqwh5i5d58882FCxcGBgY+8cQTTU1Nx44dg7xpaWlpb28n6jt69CggHAmBXV1dZAXb2tpaW1t5Qnt7O8WE8uVVGHxXS/oG2BSuXr1KDs3f33/mzJkQMMKFcpvEw4QJE+69917uGTt2rKenZ0JCQlJSEmL1QUFBSUlJMlVXcgyyRMlfOp6lAEWqVSjcpS6XgROqhKHk6AV+agqRZXVZ6swcIX7i4+OTk5Ozs7OzsrIyMzOTkpKYrQ2YMeAkIZOTk1FhJE0CaGUwqwy7l62HY+DJTFZMT0/PyspatGhReno6bjNpGGlG9fT0RBOMbAeYJO0RGBiYm5u7Y8eOM2fOqJMFXJerdsnVq1ddr71ve41xOp3nzp179913d+3aVVlZWVlZWV5eXlZWdvDgQf5WVFRUVlaS1sMpHRgYePPNN19//fXKysoTJ040NjY2NjYCoR5t6RB4dLjF/b29vdjDrq6ugYGB8+fPC+Ul6ztE4JC2+PfmzZsnT550c3OLjIxkYKCuDlsqsCdNmoQLSpr+nnvuQWgQNQpE7EWXCbdTSo4Mt8+CV1WtVB1xWFPR28akADkxp6rpkyUBpIoBKb6xKqOLFy5cmJiYmJKSkpaWFhsbm5+fn5SURFaDOBAxKAwmXAt4gxMCgdyvM/KyVJvMGyYmJiYnJ6elpWVmZgLFjIwM6nsQoYqMjPTw8JgzZ86cOXMgUSUbSfoECxkZGfnCCy+0tbX95S9/+frrr3GpoFVVWEoXiNwjRlJ3HX4bsBwzNDR05cqVgwcP7tu3b8+ePdXV1fv27auoqDhw4MDhw4dLS0srKysPHDhQW1tbW1vb0tJSW1vb1tZG5rC6urq+vr6xsXFgYKC3t7e3t1cHP7GHrgs6lCiRV3300UcMeBDCQ00D/Mu/+T+42BTVtp2NGzfCRc2ZMweHkyy8QFHthIAjHTdu3NSpUyMjIwnzaJbFipKHAIfqwrIJIMGkKIi7asxRpY1dwuUTCTYBmGp5XO0ebw6w6ZzCLtEfnJubm5+fn5yc/OSTTyYkJJSUlKSnpyclJYH5xMRE6lHNZjPOKh+NLWWnEPZIJEzVDQIM45qiqSHFPQJI3FTyKGlpaSkpKXa7PTg4mKwGmX0auykY8PT0pLk8MjKysLBw69atf/zjH4Vjh2VQrzG1OG5Im06nQ+a//AL7e4/86dOnq6qqdu7cWVZWtnv37qqqKuqny8rKqqqqSktLq6qqsIQ0MVVVVdXX10O6HD9+HBSJZbuD3VMNICA8cuQIAic6Lsu1MOI7WRItcPYvXLjA9YR0AG4nzbjYuvu1nkD599577/3pT39KrwCtRtDIAQEBIvUvvZFSK0MJNZlA/mIkBXIqnAjS8OLE4KCSps7hkFepEwEExjzERZ+SkpKZmZmTk5OTk5OZmZmamooJKigoeOSRR3JychYtWpSWlobhxVSiQ8XcGDkGIYFEFlU9cnUJBwtjxNNQiAOfbDFUIyQmJqanpwNCihPIdlIOifQOaRLK6CgPYHC6yWTasGFDV1cXrLsKKsk2qf2orjj8164xcmER8mH3du7cSRBYUVEBGisqKsrLy+FpmpubMYZNTU3wNK2trYI9Ndjr7e0dFntCw/T29v72t7/929/+JtvPsN/2u8Uhw5X4eVpbW0GIn5/fQw89hB4MTUlAbvz48ZMmTUKtUO3HDQ0NJZ6hUZ1iWnDluiIjI6VkFNqZ24iDAEWsohpNccVLxTaGToDnuszKPEYCUXkTKb5h6mh8fPyiRYvy8/OXLl1aXFwcHx9P1CdTR7F4+JwiUqoSP2azGS0PlfJRo1CJWiVtCCBVmyll6DBAWMLc3NzCwsKCgoL09HTmhBNX2+12xIvnzZvn4eHh4eGBswqL4+vrS0Z03759x44dowQSEaphL79vEYFcW4ODg3QwkMojPUidWkVFhXAzGMbKykoebW5urq2t7ezs7O/vVzHW47J08CNJeOzYsT//+c+y34iDrgPht/r9/5FFizAhxOrVq9F0mzVr1oMPPogNVEvPBIFYv0mTJlGYwsWXlJSE1CrNQSK3o+tvJs0gFpIncFuQyWtphsZZxU2F7VCnEasGRxxO1YmVV5Ek4BKPj48HaZgd5hZmZWVRpOrr6yvSiZgsebnEdQCPbUKIGZX4FRCqaXo1ZKXOTvYUMaoS7kIRsR2ARhKVpBmTk5Nzc3OJWufOnevl5UX/FIWEJP2pwouPj3/55ZdPnDhBERx8m+qUfes20Ol0vvfee0Cuqqqqra1t3759+/btq6ysPHz4cF1d3eHDhwkO9+/fX1FRUVdXhxdKt/uw8R5IGwmBH3zwAdk/pyaMrx6WfOHv3AuFBMJXv3z5Mn10ISEhU6dOpRliwu1LvNDx48dPnjzZw8MDtSWTycTlQpczjSbEXaJeJfBD8B+jIRhTYSn+qvSOUVsjQjtyBaueKiYFEFL4pmKPJxCtcZWzBI3UkfIcChKlr5oMJLU1FotF3E75aMEbH+pqA8UMskGALuGKXPkkoM4NnAvSJCQ2MjMzFy9ejIZ/YmJidnb2ihUr7HY7ESMV8Gr2n6I5Dw+P4ODgkpKS/fv3X7x4US2C+xazEU6tC+HKlSvbtm1rbm4Gh9RV79ixA8ECatZIUWAASeLX19cfPXq0v79fXFCxe729vX19fb29vcK49Pf3UxPT3t5eWVn56aefchB31n3B+AxLTA1pSqfco+p5ucaQuLi66S7qDeftk70oAVULxPfv3+/l5WUymdzd3YVoIQ1ILp6k/KRJk8aNGzd9+vSIiIiYmBjGjwUGBi5evBgmE/hxQ2bUCMMpeAN7/CsPqYiV2xTriqnEPJJbV0M+dclDOo5UnD3hYEAdcw6F7ImJiaFPQmgbfEi73U4RDFYdrfTo6Gh0bsQx5vmgDt0Nsc+SlYlWpgKrzI36L0CVnCc4l9wJUFy0aBGJDeJGkv4cPAqAMKhQqSQ25s6dO2/evNjY2FdffbWnp4cacdeybyrCdfqouj7GYa9n9Tr//5rZ169fLy0tLSsrq6ioaGhooMSstrb24MGDFKy1tLTghZaWlu7btw+ytKGhoaOjo729vV9bZPm6u7vpReJOAj9yD7W1tdu2bSPtcfLkSd2BqvuNiFKqENLxyJwXQZFgcmg4HUu5repYcqcKyG+++UY345pPiYmJQdFMRJnQApWmpAkTJvz4xz9+4IEHpk2bZrVakQuYNWsWGMvJyeFO+HR1RJSaZuB+dYaUukTGX0UmrWFq/Rr2UMTIXaNBV/i54lAyBxLjYVKoLw0KCkIvHAQKhPjW1NwhYGmz2XBT4WzxQiV1AYNq1kaRSvLQNQ7kqASHqncq96sVDsJOxcfHp6ampqWlpaenQ6iStyQfC3eq1o5HRkZiLYFlVFTUqlWrDh06dP78+WElp+S6UpVXb968eeXKFWm2GsmKjpFn37x58/3339+5cyfUS2Nj44EDB2pqao4cOVJVVfXuu+9WVVVR+ELiHpPY0NDQ3t5ONo+F54kBpPsBxqW/v7+xsXHv3r0HDx7kPaurq6urq/v7+y9evChDNoe1da7bicodc8+VK1f4hhK2yZNx60dqs6Cxxel0Xrx4UTeOgoYXdqxNmzZR9e/r68t0TrJ/WD9xPqdNm0aPcmxsrJ+f3/Tp05GEgeUjGWjWpnObtcGJolwomFTHaahLwKnik1JvSFrVfQUearA3LORGwqHq9dnt9sTExNTUVPSCse0oegkjqnI8oaGhtFOIWQOfNHzgi0qYxwZk1aaay+dKNsUVbxIW6pb99sID2U0ybl9iG3Nycsj7w6aiDS/NyjRwUHrp4eHh4+OTmZn5zjvvfPzxx2ot+DfffKN2UWEAVaniOxCNY5yK9ua1a9d2795N1FddXQ1I+Lempqa6unrPnj3CzUDP1NTUUP+Jwyl5dtUL7e3tra+v37Zt21tvvVVaWlpeXr5///7a2lpo1fb29t7e3gsXLjg128WRDQ4OSpPu9evXJSN3+fJlvtuf/vSnXbt2LV++fOvWrU1NTV988YVTmRIxbO5VvFn2JzXLp+t/H7pdFrG1tZWuosDAwKlTpyKLhiMK/wnpMm3aNKQZjUajp6fnAw88MHbsWLIObLc2my08PFx8QpvNJjZQ9Ugl5aBm/ECRaPjrjKcwMVLRAkp1eQvXJRiTmhXdFcwyGAwUrNjtdhqCYTWkJkYMl7wcwQSOUNgai8WCAAoF3DJjlC/LOYGM1UWSujUSDtVCPPUJdqWhmS+CVUxMTEQxgDo7+rYcDgeBorR6YCGpVqWr2GazPffccwMDA8jtgka1zkYsh4o61/hojFNzwLg0GxoakKs4dOhQfX19aWkpeYiOjg4MIAXcUsldXV3d3t6uJiEwfTQBdnZ29vX1HThwYMuWLe++++5BbVVVVZWXl9OBUVlZSb0blM+5c+dUYLiuGzdudHV1rVq1CoUVxgzFxMSkpKQUFhZu3rx5x44dLS0tly9fRtpQXug64EVOxDfffIPlvHr1qogjiox0e3u70WikU/bhhx+ePXu2FGGL6ZsyZYqbmxvKLjSqEh8+/PDDFoslMjIyOzubWAijATsvxlCdVCPm0TXtbtGGLqrjbuTaFd9S9TZ1XtydQag6fioC7Xa7wWAgI2ez2RwOh9Fo9PX1pYVPojurUtIdHR0dEBBA/TRfmaI5gzbwnDZfBE6FdJFjEFzJv2IbJUrULdU7FbCp8aGa8BCGKTk5OScnJzc3F7+UiJHGkdTU1ISEBIvFwhfhx42KisIPQi7Vzc3NbrevXbu2v79fJskK0pxaJKUTQVbXGPXSHBoa+vTTT+mQoMlo3759NTU1VVVVtbW1e/fu7enpqampOXjwYGlp6YEDB0BpW1tbW1ubyE9g9zo7OxsbG6uqqjZt2rRt27bS0tLdu3fv2rULswnjevDgwYaGBpLy7e3tHR0dlZWVa9eufeyxx9avX//uu+9iaSsrK2tra4Hx6tWrGYuXlJQkTT3UTMq5hgSLiIhITEz8+c9/vn379p6enrNnz4rCj85Zd3VxBwcHMYnXr1/fsWOHt7c32V43Nzdvb+9777134sSJU6ZMmTBhwk9/+tPx48dPmzaNOYFEYnPnzqU++5577mHyDHkqaEMBFS4izqSKQKMyzFR1RwWBJmXgqXh9Kqmo2g3XutCR1p2dUrtWL+ZwOKxWK9IyzGmK1jxMzBe0SlRUFEGUHJuwr+wL9GdBU9m0QJEgUJxq4WxUXZxopYrd1RJKAKkWAziUEnC1hwMHmDqetLQ0yt8QE6AOgW9NUR7VsHFxcZGRkVhFvqC0GttstieffLKqquqvf/2rbot3KorjwyBwaGhIlbihb2jXrl3l5eWNjY2Arb6+vqampra2tr6+noAQUrSqqqq1tbWzs/O9996D6kQOFPXR/fv3U9Xd0dFx7NgxWpNaW1tpzz169ChmkDASS1hfX/+b3/xmzZo1JSUlK1euXL58Oe2nxcXFK1asKCoqWrp06ZIlSwoLC7Ozs1NSUhISEkgPUBAYHx9fWFi4YcOG/fv3V1ZW7tu3b+3atRaLJSgoKCMj45lnniktLe3p6fn4448huNRNS4YK4ZafOHEiJSUF4RY/Pz+r1TpnzpwZM2a4ublRiUbuYfr06TQrw4KEhIRMmzaNKRH33HMPF1NWVhZGDzuA+RK5e+Ptg9xUF/TOCFTjrmHhR/Dpmnm7AxqHjRWtVitdRchvI8nl7+8PQgTA0Uqij1R4aGio2Wx2OBw806KVjC9cuNBqtdKIDALFVbZYLCju0QzJC+VtozWKRdCltl9JMYBqA4XskYhUSg7IdtpsNsgkPiUpKQmpgdzc3IyMjOzs7EWLFpEUjY6OXr58+apVqwoKCiIjI2fOnDlr1iwqwgkXae1PS0t74YUXjh49OjQ0JCMhnErNjQrFMUKM8lR57J133tm8eTP5wKamJkrS6Busr69H+XP37t179+5tbGzE6LW2tjY3NxPaYQzxSAWZVKL19/cTIkpltmjGkKvo7OwsLy/ftGnTqlWriouLi4qKCgsLlyxZsnTp0oKCAjYqtijOOEOh6dan1iE/P5+WmfXr12/fvp3mqVdeeaWkpCQlJWXlypVZWVlIp7zyyis1NTU9PT1ffPHFV1999fvf/76np6eysvJnP/sZFxlvGBIS8tBDD7m5ubm7u//kJz+577777rnnnokTJ7q5uYluAIov06dP//GPfzx58mQ6kvC78vLySF7jcQEYVwSqrMkdECj3WLROCJXhjL49eybRlO4JujBPEKu7X2xjYmIiTCYC+DTyOxwO9hSbUs/NRkDVK5Sv1WqNjIyMVhKAGDqoGilk41yZTCYozZCQEC8vL+lXFKsVExMTFxfnuonYtTyKauIEkFT26BQfHUrdHPcL/UtW02azod+RmZmJ0DgC5FarFcNosVggb6gRp7F49uzZvr6+SUlJ69at+93vfidN5+Jt3YbAYX1Tp9P59ddfP/7440VFRU1NTVSltbS0lJWV1dTUVFRUUJ9NGU1XV1d9fX1LSwvGkMQgQOpWVpey7pCpJ5h877333nzzzXXr1j355JPLli3Ly8vLzs4uKirKyspatmxZVlZWVlZWQUHB4sWLs7OzMzMzEVwQqfx58+YVFhaWlJSUlJSsWrVqzZo1v/jFLzZu3Pjaa6+VlJSsWLHiscceKyoqorRl6tSptIECIVK07Ge+vr4IFnl5ec2ePfuhhx564IEHJAnh7e2NaB+jMoKDg93d3ceOHTt58uTx48f/x3/8B03fWVlZXFJqag7GkuIy8UJVHNqU+hUVOSpKxQBKTZkgway1O+k8TLlS7S4NEzyqS+ILbOLj4wWZfGtIFLJ5xLdCtxgMBiTVJBshFpLvTmxMHChfBFtEZ1VGvBUAACAASURBVD2mjwJrk8nEPiK1BIwhYb6iNB8LhKK1igIOnhfKbUl4QClx8LwDxllK2wkU4YRoa4anSU1NzcrKwgVLSkriLwUJDC+ALIC5iYmJefXVV8+ePYuF0+kpDg4OjohAYFpZWZmenk68d+jQoZqampqamra2NlqWyFgANumEUKGl3v4HK7YZLPHhhx/u3bt348aNjz322OrVqxm8XlxcXFBQUKKtRx99dMWKFTk5OdnZ2WgNcUJNJhP5qNTU1CeffPKXv/zl+vXrf/7znz/xxBMbN25cs2bN6tWrH330USBqt9tnz55NnYSnp+fcuXPnzJmD7I2vry9sAUImbm5uNDpMnDjxgQceAHVQjjifHh4eqIb+6Ec/uueee2bMmEFid+nSpQsWLFCzcKqJGyn3YLm9KUkwpkvouTqf0bcT8boIUDZ+gavuDe23p7nFx0NezW63WywWRtaRVpGPA1d8KVxQVG1Ukyv+Hm+CkQT28tUcWnbeZDJ5e3uLHyu7A6aSrRYZW7vWbexwODCP+JmSEhSrKAEh/worAwi5DUTJlFAJRAUC35Qnp6Sk0BqSnJxMdpFPx7N1OBwRERFeXl4zZsxA5Co1NXXPnj3AD8L/xo0bUH13QiBZjtOnT8fExDz99NONjY1oztfU1CBDWFVVhcSL5CHExAnqpPlIXa4V2/IQdE5LS0teXt6zzz773HPPPfnkk+vWrVu5ciVh4dKlS5ctW5abm7tkyZK8vLyioqLly5cvWbIkPz9fagKNRiM1uPPnz7fb7UVFRS+88MJrr7324osvvvTSS5s2bdq8efPKlSt/9rOflZSUJCUlubm5BQYGzpw5E4Yd/5MOQDT5Zs+ePXXq1EmTJj344IMkakNDQ+mOBYTz5s17+OGHJ0+ePHbs2KlTp/7oRz8im5SRkcHWq8sryDIqS8d86hBoGW6pplU1gwJLq8vS+Zk6M2i/PRcvURPYY3ejqUoaNUALj5rNZgwUIlSwoDabDdaXBInNZouKiiJ8ApBwISBNoBIZGTlv3ryoqCgubjWM5LBJOUZqU75tNhtQsWhd/2wQUkQarTWRSKpDDKA0E4uPKtuQa3oDG0v2gj6SxMTEvLw8wkX1nZkSOW/evKlTp/r4+KSnp3d1daky8Ddv3hwRgbKuXr16/vz5xx9/vLi4mBZB4NfV1YWMRVlZ2dGjR8FeR0dHR0eHlIkCTlf4qQjU3U8BTVVVFfiB/w0ODi4sLFyxYsWaNWvQQSgqKnr88cefeOIJUFRcXAwIFy1aROO2w+FA2gitrtzc3KVLl1KatGjRonXr1m3fvv2NN974zW9+s2nTpmeeeSY8PBy8zZs3Lzw8HL1a8j+zZ8+ePn369OnTwR4VmCIxbDKZgoODZ86cKR26GEAo7EceeYSLb6Rs+0jws7jUkencThWZuhjMqvT76d5H3mQkdlQgatHy5nat9Qk/n+Z07Bu+tLBKnA0Z/ISorGw0UlhnMpmCgoK8vLwYk8xhx8bGGgwGiFZgRl7HaDTCkYgbCR7i4+PDw8NRsoIfio6OJhgRx4QfyKbJBai4cmgtIOLBijcbrZTsiOOgOqXR2oAAeSY7GjmMzMxMyBtoQrPZzEiPhQsXMnNlzZo1f/nLX5xaz82ICLxx48Y333yjDrupra1NTU198cUXu7u7Dxw4QL0oZTE6QYqenp6BgQEaJlydUkGgDnus7u7uI0eO7NixAytEgttsNjOLq7CwcOnSpStXrlyyZElxcfEjjzwCAouKipYsWVJQUJCXlwdrzJ5tNpspbggPD+fsLFiwgLlC9KpkZWWtXLny5ZdffuONN5577rn4+PhZs2YFBwd7e3tjEt3d3en+RB8JlSqG2xi0KaXz58+fMWOGqFSMHTuW8kKqhI1GIwVirkm/O1g/VwTq7tchcFjjprN7rvZQh1iJ2cRVFgRyGSEPN3/+fFo9uNApQ7NYLDBScPQkZiRpKV/QaDTyHCZz8Slc+gSNcmaYVKGylGrWITY2lp+JvmdgIJ0ZVquVWtyQkBDg7dA6mwC5xWKJ1hRxhOBRkWlVshp4njxTvHHwyfPlIwTMmEc6NsQNNplMGRkZeHM7duz485//fCcEOpVsxvnz5zGaFy9eXLt2bX5+fmdnZ1NTU3V1tQg64T1iDLu7u/v7+2mcd/U2e++4aJt48cUX3d3do6Ojod2oMjEajQkJCcnJyfCcxcXFJSUlq1evXr169c9+9rNHHnkEj7SwsDAvL4/GTeZ+yThuxoasWLHi5Zdf3rp169atW5ctW8b8TYfD8fjjjz/33HM5OTkBAQEGg8Fms6EezeAE7J6ISrDRUhXg6enJ6DJShfSJGo3GgoICq9UaEhKCiyUXogq8YeFnvj0dr75qJC90WF9UB04d2FwRqEO+RWGAYmNj8T/J+mCa5PgN2pQ7GXehKm6oew1WlGy+vJy4lK/J84kkqR9SEahythQJmjU9OBxRnsYJR3zAYrFQxBOjjbWRRhN05VRUU0QKZmKVJSGx2EDuBGliSAWu8EkWi2XhwoWLFi3KyspKTU1dtmxZbGws0m+oBLW3t4+IwCFtoLHaOgCd2tzcnJubu2rVqvr6+j179lCfDQJJrx85coTEg8p2qgjsU5YOgZ2dnceOHdu4cWNoaKi7u3tgYKDdbkdwEiSQ187Ly1u8eDHpilWrVj366KMYQ3BI3iI7OxtjCHsGgLOysqKjo+GyVq5c+atf/WrPnj3btm3buHEj5X8bNmxYvHgxjdUAj18LdUYYCAgDk8mEgX3ooYdEIQZh6eDg4MWLF3NJ0T+uQ6BATsXYSAZwWAS62jF5puqvukKU91SRqVIyRq1AnM+yaeRqREQEQteQxiQJeAmfyAxz/E8mH+oaOziNNDezq0IFy8GQouBrIoZv0DSLXUkmk8nk6+sbGhoKemNiYqhfETsJAgMDA41GI8DjteISk0PmUaFt6EjG1gFFrB9gI8yzaSpv2DqkHyWeVKkdPhfSGB8VVxa6GI9yRARKL4bwp9wAkOfPn//1r3+dmJhYWlpKthDns6urq6mpqbGxkWpPEagfCX6uIOzr6ztx4kRubm5oaCi/HMrcEkJw3UdrlYoIeC1btmyFtoqKipYtWybyCkuWLHniiSeWLFlis9l4H+gEdmj8DXIbGzdufPTRR59++ulnn312/fr1Ml5PdLgQyZaDobTKx8fnoYcemjRpkpubG21BHh4eixcvpm2H2IY0l3ihYgCHRaDOxLnGfqbhshHRSke8avTk8pXAT5hGkwvlI0fIwfNCq9XKFgZySPGpeRS6GanzREU7KChI52xTmSC5opCQEO4xa/l6wEbkFhUVxWhKzp4AT84GMaeXl1dERAQVAtHR0cnJySYtb8F74rDwqPjnYr5wr6AJYNFjYmKAEz9cdHQ0Phd6bZhQzJ04tHKPGEDRChGOF8hBKeGyms3m9PT03NzchoaG/5mJ0S0QSInN8ePHly9f/tZbb1H4gkpvc3MzFKhMiaDkhXv6+/tPnDjR19c3MDCAWOiJEyekZZ7atI8++oiZW8QbbK7SC6fbXE1KOa9U3KanpxMoFhQUZGVlmbTBhmZNiUjX+CMNQex2GRkZsMy0tNNoI+4o7wAUvby8pkyZQmKQvIVkfoU9Z78UY2JSUuo6e6Wiy9UXNWsZecEYF5ZF0zjj+WKX5E6dzRRbJ2+Lc0jYZrVaZRQkoGUIRGBg4IwZM8xmM9c0+7pkWShSY5/i5exxPBoVFYU3geAitguCjSyiDGkGlhBgoaGhdq2HUFIU/MVIMt5Ux50IGKKiominFuTQoU8cyO+CqD5+rOQJTSZTlDZILyIigpZCyvGEueGt+Cu5xJGWxWJhRIekQ2NiYsgr/u1vf/unEejUqmdYFy5cqKmpAYTUo1E0gzR9V1dXe3s7GXZqX6BG0ckGohA2/f39J0+ehAh97733YmNj+f5Wq1Uwoy4Bz7Ahk8lkokyMrRorSmjn+g4CQqHX5Ye02WzMjuaSIpKk99RgMOAhk55metQbb7whHJqKlujoaPWK162REPg/mkd1RWvNQcJkWiyWaBdNNAEh14HRaMTXIDSy2+0BAQGJiYkmpeAmMTHR29t71qxZZrOZ6ker1UoiISYmBndOMqiMdsVDwVKFhoay6YAr5r3Q0BgeHm4ymaxWq8FgwLQikENOKDIyUkJZi1aOx5HD5ZAqtGuVdyqtwqZAysShCCg6tKIZm81m0CZ/Ea1BVwJmPg6lLDUb4WoJ7VpfsuP2KhxZHKHdbkfZzW63JyUlmc3mhISE119//erVq/80AoGf2pz+zTffnD17tra2lkksqvgncyPIUhAogrqTJ08ODAxAhMLZgMPOzs7jx48PDAzExcXxy5lMJqZYGkdYKizV/nEeMmo8JLcNt3e+Gl2YSZ4sHB2/t8ViYdsTzs1kMiH0Eh4evnr1ano933777ZCQELF1OsgZtI6HYY2eavHMWobN1QDqWBO5U0Wd+hyby5KH7HY7movs+rzK398/Ojoaj8NisRgMBmpiEQLEKkZEROTm5paWlsbFxU2bNs3Pz2/OnDnEh5AruH90CVPdQhN6eHg49ZNgnpMsFpLfJSQkBHV64bpkv5AQUcoPOcjo6Gh8SIvFguths9lgyNgOQI7kNiV/gEHmjBGMgEN+ZbvdDpHDRoMDKc4q8OMNhRd1za/KzigHyT2MqTp16tQ/lA/ULeJDsHfp0iVV0+H48eMNDQ30SbS2ttK5S2hH3Ux/fz812RSsYQ/7+vqOHz+OkURyprOzk19Fzni00lLAkohFvBeDUmDJpclvjL/EbR38ZAkfgLPOpcZlqrMz4uQkJCQUFxdnZmaazebY2FiS8natcko2bPlXtXiCNx1K1VfJsZmUqM+qMJk699IyXPZCBaHuabh/NpuNunaj0cjTOAN8Lm42jTkLFiwIDg52OBzV1dXyi9fW1i5cuJB4GKLYarUmJCSYTCaq1am9joiIoHiS+FB2Q1xT+UWYdkYmFkxKxYzEz2wKULJy3nDyDQZDbGwsmxfdw+JIw23aNEVT9lBSJlZNCIOzIYSKw+GYP38+ZwaVV4n9+DgSpNweFoGc8JiYGJMSKJnNZjTFn3766cHBwRs3bvxvvFCdwPBXX32FYaR39tatWw0NDUuXLk1OTi4uLn766ae3bNmyc+fOffv21dXVgU+CQ8Qs2tracFlJx2M2ab6WnJJF0fYSBLoCSQcq9khJFpuVzLgaicnz5ckLtDYiOZUCGInBiNRBXUZGBu8frfXpqFe/RWMLdaEd/xpdKBk+Qj1C1XLq7OFI2NO5uDqrazQaExIS4I3sdjtgw874+Phs3ry5paUlIyNj6tSp0CHr1q3btm1bfX39kDZEgV+c7fjKlStff/31xYsXP//8cxLIg4ODr7zySlRU1JQpU+bMmePu7k5ylfp1Pz8/srv8azQaSbQiR0+iAqeUfcGsVA6RkIRt5tziTuPKwspERETQv2fWytkkDehwOGRz8fX1NRqNoMhisbBxUHjNlo0pNpvN9E+ouXtXBOqcTwGkxWKJiYkJDw+nWi0hIWHx4sUWi6W3txf4/NMIpANfJI8kJpS2WrQxnE7nkSNH8vPzKRV3d3dHkSooKCgrK2vTpk2M+CRh2Nvbe/LkyePHj8PNNDY24h6IRi0+iVFJnekQaHJZNk0zj4tVZSOHfYlRa4q1aBX63COMgmyTEpxAOnMBca2Aed2lb3ZJAwqSxbabFYZGvF8Bp/puRqUrQt0dzBqnrxpGs0uQLNtNaGgoVzC+BntKSEjIf//3f8s+Ozg4iJ7d4OCg9NCoA8OcSjOXbo92Op1ffPHFb37zm4iIiNmzZ1NGy9YmRDTOKscQEBDAGBbJJarw47eOiIig4GbevHnYcL4jN0wmk8PhICyX3l9xPjkt0cr8CYTeBEvUr8THx3Oi4Gwxwmp8GK3Jezs0iWHbcBrksoxGI2WSoDQ9PT0qKuq//uu/pD3if4NApzJhU/QVeVSUMKQV/9SpU08//bS/v/9DDz3EtNTZs2dPmzbN09NzwYIFOTk5jz32GMPP2traDh069Mtf/nL16tXQXFxtfHODi3yDDk66oEgie34/gY3OtsiladGyZ2CAYis8TDkA3hPvFIMpHB10s+ocWm6P9HRJCDlU129k0vhJFX6q/XRFuFmT5bQqCQkuSt2OozoI8fHxkCLJycn+/v7x8fHHjh0DVFeuXJFWGn5H/kXDimHug4ODQ9pCnUEVJaCu2Ol0Xrp0qby8fOnSpUajEQeSfYS8oknLqTLmmjvZAfmmEuQDPzSwQ0NDVfdb9fyhhebPn8/eLVsn54SnBQUFkVaBLpK9FSCZTCYMMlQtvz6WzaoVx0dr3Rvq27r+NFZtHgY5YSZwZGdnU49Gffb/xgtF00W0aKT9yanJ1HAbKRv+vXDhwpYtW0JDQx9++GFCbSbOy42YmJikpCQCACgsCBXYAqMWBsjla1aiJtXpEkThCbDJsV8abq/J1L0EkFitVmQ8IeKsViu0p+X2ci1+J/xVfoaoqKgYTfNLvSbEZBlvj+jMw9Ew6tfU/aKu31eeIEZe3FSTlpMY1k3gX74ahZS+vr4bN2784osvSDJJBlgEO9hhxd9RFQZc52aKOpgAWCdyNzQ09O6779Ia5unpyZRcelslUGcPEkk4sq9UybM7W7RGZ9loDFrDBD1N4rtKeMY1EBUVRZrXprUFY6YiIiL4azabSdZzJcTGxrLV2rW+Qd4Tew5XJF6JVVHKkRCUdDzYS0xM/PDDD69evYqb8L9E4D+7RFXqyy+/3L59e2xs7PTp0xkvDocmLD/JA2rqzWYz00ssFotOGdqsBEI6gzasd+qKT1fQqvZkpCWIMg9Xa2LRGv+MLjGqa7zqaoRNt1t1HbEkByC3VW+Ti0D3jXgfNojIyEibzcbJJDLBNQoICCgsLOzt7VW3zm97Ac7PP//8pZdemj9//syZM+FyMOBEhtyg9QTrh24SYxK57o1aXbjNZjMajRCkPFPyWDiZ8vVDQ0NpVqAonGXTtKFiY2MtFgsjX9gOxKmxa4WjMZocm47zFEbUrDRkmM3mlJQUg8GQmJjI5JlDhw45/8EO3X/VUuMHTv3Zs2c7OztTU1Mpa/D19YUQo6SQngMCP4smPilbo86SuGLGNFywp17ow3plRkUZSfdC9ZngSn1D14verJSkWBRKRj1Ii7Jcdwfd8bt+QbNC86jEj+5pLFhlq9XKns1Zpa46MzOzoqICHSF16uW3uvg4+ffTTz99++23U1JSzGYzpWp5eXn5+fnBwcFubm7BwcHYKzQg/P39SeUblKYnAr8AbXl5eRm0UifpbDJrJJy/vz/pEOIIUqDySxmNRgrreE6U0n4liUTZ8myKGg10gFlTtWGhZmS1WouKihISEjIyMtrb250uROa/wwayZPyQrO7u7scffzwsLIwGWXZoLD6NJ0RWOnFb1+vS9YJWDYsOWsPSpwYts69e+uLdGbUSavUh3fGo72bRUuGCSTZp03Bx3bCw0dlq9Qvy6eLqWLXco0BR91q258jIyMDAwOTkZC6y+Pj4t956C20vmRWn9sF8e0tVo1SF/S5duoRQPPecPn36iSeemD59uqenp4+Pz7x58+ByuMQtGltmMpmIz2l3mjlzJhk8KgEsFgslgaJlTMUcO5GUywhyQkJC3NzcfHx8bEpBn8QdnGoalCRNBc2DvrjUtVH/KXpidrv9+eefl1Hbzn+zDXTePg5+cHDw0qVLqnjuV199tX37dqPR6ObmRuGSSQvByRHheOgSCa4e2rC2Qmeg1BeqC9iol69c5SpyVPszko1SjaQA3qx5p+bb48BhD2ZY+FmVTKD19u4Hs6b7oG4icqjsYgjIG43GyMjIRx999MyZM/KLQLqo+vzf9mJSkPyrm1suJuLy5cv9/f15eXnBwcEzZsygX9TX19disRQVFTEYEHB6eXl5eHggOePQenlxFCkHt9lsjBmcNWsWGqcWJY1h1HoXg4KCUEALDw8XQ6eGdtHR0Xhn9tvb5/FL4+LiKGEjd2owGBISEp577rmPPvqIjni+l06o4ltHoG5Oom6hnOt0Oq9cuVJWVpaRkYHsCpsWnYHR0dFCxqjrzpfvSAjUPapCzhVmZAt0GBMO0+Rio8yKmJK8Dwgx307VquAZdungpzo/ViUHqPuaRiUEVTcC3jAuLq6urk5OvmyF8usMO7fjX349cAPhsBs3bsiHymFAq6qa6J9//jlt32RHrl279qc//enll18OCwubPn26h4cHhVPYQ/broKCgOXPmUNA7bdo0uquxdRRpxMTEUFxKLc7MmTMffvhhqg6kVVdcSim8putNSqPEJ6LOLioqatGiRa+99trAwAAMpW4qiWr5Wd86AkWejY1WnBDdrDaUqq9fv37ixImSkhKEgOjcIyvKhaVWdbq6f8OaOFcbqHuOXKDDGh/1UpZHrUrVmM7w8hCHZ1UEGlyxystdtxWdEbPcnny3KVVv6jO5Pez2RBy4cePG8+fPO7WMrlwHQnjqroxvaaFd6yrTeu3aNTHFAkUZ66fyqFxFcuWcOXPmzTffjImJIYG+fv36t95665NPPrl8+fKWLVv8/f2nT5/OQ0Q6GKi0tLQnn3xy5cqVM2bMmD59OjL1nG25zKK0IRzUr1F2hzgNdjUzM5Nc2rZt26qrq99///2vv/6ac6tK9H799deqzZfvxfp3eKE64Ekm11VDHxw6nc4zZ8689NJLZrNZ7XNZoIwW0iFQd+XJFakDoauFdL3HNaTU2VIxdDrsqZ8lzqdqEnUbgcFlue4R5tuDQPWodPvOsC83mUxwG0ePHlV/e34Ctfnz2rVr/wYDKL+y3B4cHFTn5MAJkRHheHRzRNTb6mwG14l/XHXXrl07evTohg0bEhMTo6KisrKytm7devLkSd78+vXrf/nLX55//nl/f/9Zs2aRx7fZbPn5+WvWrNmwYcOrr766Y8cO9N1PnTr1ySeffPXVVzo3kiv50qVLagJGvebF7MsRqsf5rSNQTezqxhVxD2dch0ae+fXXX+/bty85OZkavwXKBK9hEehqE3RmathrWi7rYb1Ei0vhpS4q09k0Fcbyua5PkzVscKviWfdBuqcNa/fUTeH555///PPPncqcKS4+NfpyvVa+7UtCRnzJMcjxqHfqgpdhp4XpLnfZU2SjV6863Y4vo34uXrwo47pcCWEOT0aJ6IZ56Q5PHdIih6H7suqb//u40H9wyVeSA7148eKHH35YUFAQFhaG4gvugVy1uKmkzg0GAwWHMurZqLVECHs27DL+T1ylzojpMCZLtyPo3tM0HFNiUIaumLUiLPMIHK84xmwT0lQVHh5OU1xwcLDktcrKyr67X3J0/UPrLkWgbmIZRaeffPLJpk2bKJSBTcZ3p/oeXgsWx6TNY1AxY3LhVFR06Z4jL9RhQB6yDJf5MJlMVpdSadX6uYJTB1RB4B0MNRS5tI9YtBQFE1EQVw8ICPjwww9HmhYyuu6eddchkOU6aU3+vXjx4rZt22w2m4+Pj9FoRJbYbDYHBQWFhYVRKSbWTwcSV8DoLJvuX4NWUOqKBB1Q5bUjeZvyhiqTpH6ibi9w3SPEUOueYNHUpkNDQyU1zCy3b2nw8uj6F667EYG6gFCSGVS3SaFwfX19RkYGQ8WACgZQGm0MwyXfXdcdAGl00SZzdQt1y+zir6p+qcGgH447LMZMw3G8YjzlfbiBMYQ9DwkJKSwshHlzrdgcXXfhuusQiP+pXj26WbnC40Gjnz59evHixe7u7pRB0DxCmZvO2ozEN+pMkCuihl06HI70BJVBGZb81MWHcmAjIZAcqclkoqeObBXhX1hY2IsvvshZknza6LrL112HQKfGR+k8KLUtTSWjaNT43e9+t379+rCwMMQqJZ0onWam24c0DAswV+AJ9+hqKkdiYlw5SdadLfBI9+vMKaYP7HFswcHBFBknJSXV1tYSPHOubt26dedZqKPrblh3IwKdGsWMMRRCWe174oaaTb5+/frnn3/+wgsvIJeAAgKKZiojqnqAI2HApLRfjIQKV0eUf4c1vCNJY+jsoe5R1yfTExAWFkZPMPnitLS0devWnTt3jo2J3jPn7Wnf0XXXrrsOgWpKSrV14otKTlMyPyIexUMXL1585513QkNDQ0JCQkJCEEqTEgdZquShKxhMw+m1jGQ2jbdTODrbpSJQh0yiONeQ1aDo3yy4XYEKdQaz2Yza7IsvvvjRRx85FefcqSSj/m2lnqPrf73uOgT+q9bQ0NDhw4fT0tLQmaVmj1ZrrnKdm2rT5m/RuM1f0ecayS10fYj3N5lMoMigTRERykRsMkijUchkMtEhadWko6UUFqFbJNZpbwsODk5PT3/nnXc+/vjjUbbz+75+yAjkb2dn56pVq2idJoUo0HI4HFQJWq1W+hK5X7Q3h/USXQkV3QKKmC9eskAbjA50ARh2WO7nIerRw8LCrFYrY5zpnPTz84uOji4pKTl48ODJkyd1dYajOPz+rh8sAilCh7YZHBx87733nn766ZCQkODgYOp06by2WCxxcXHofFosFoAhQ+EFQq6MyEhRnDCfYmCBGZ8ohlcQaDQacZhBbGhoKI3hAQEBaIotX758586dp06dunDhgrSS8AUFh6Mh3/d3/WARKEsSG1evXv3kk09eeuklo9Ho6elJ9oLpaGAA+yPt5CaTSfoAXQ2gGkCqTwBaeJsCYIPBYDab+USRvodHESiGhoai+p6amvrUU0/t37//D3/4A0cuJu7fJiQxuv5t6weLQLXJRZaoBh06dMjhcDCJkp5LXFCEelAoQLVSZURceRG1V0NcUB3RQgiHBLpADmUUf39/Pz+/qKio/Pz8LVu2DAwMXLhwQdfGRdU/pQgkS9U2osHBwStXroym/r6/6weLQKdCCaptGTRAcRF/9NFHK1eunD17to+PDwMGWtK4jwAAAfNJREFUkQkyGAxSAD0SX6pm/NWlcq0yagJ6hvl7zEbPzc197bXXamtrL168OFI3gE6JTOrybt26RVPPKPB+AOuHjEC1CZikonrJXrlyhXTixx9//Otf/5pJA/PmzZs3bx60pAhkRI0wjFKgGKUNx6M+TtfZSXJy0aJFGzZsqK2tPXPmjOQMVIzRPaRrn3UqClfyr9yWbzTKxHx/1w8WgTqNSpa0pbk2np0/f76hoeGpp54yGAzz58/39PREL0O02xiZRIAHLIEZGYLAwEDmnEGfZGRkPPXUU9u3b+/q6vrrX/+qfpCu3FzXGzmsWdPVqQ9btv5/PmGj67tZP1gE/rNLNTuff/55T0/P7t27X3nllXXr1hUUFJhMJgAJRYnMaWRkZEJCwvLlyzdu3Lh169bGxsYTJ05cuXJFlaPTGbrRNbp0axSBf186NQS8VjVCowrn0qVLFy5cuHDhgk4LRCVOdJWrunceXaNLXaMIvG25+q46TlXIEpU1kakJquyXqybC6BpdrmsUgX9frkI1DA+Sf3VEpYRwI73baGw2uv6RNYrAv6+R3MUhbWKeeqeaGb+pLLnflTj5No99dH2P1ygC9Qu8iYKbSquIbzkSqIaUpd45ysSMrpHWKAL/vkayfir8UJXl32ELxFzDv1EaZnTdef0/0bBOe3dzJV0AAAAASUVORK5CYIIA alt= />
The type of clamp shown in the figure above is a _____.
A) bar clamp
B) C-clamp
C) pipe clamp
D) spring clamp"
[Ques. 5] Cable come-alongs are used to move loads _____.
A) vertically for long overhead distances
B) horizontally for long overhead distances
C) horizontally for short ground distances
D) vertically for short ground distances