× Didn't find what you were looking for? Ask a question
Top Posters
Since Sunday
New Topic  
rks23456 rks23456
wrote...
Posts: 99
Rep: 1 0
11 years ago
What nerve is involved when your leg falls asleep? I believe it is the sciatic nerve but I am not sure. What is happening to the nerve when you feel that tingling sensation?



I wanted to understand how the boulinum toxin interferes with synaptic transmission. How does it effect the transmission of the impulse from pre to post synaptic cell? Please try to explain from the perspective of synaptic transmission.



I'm also trying to understand action potential better. If tests are run on lab mammals to indicate a poisonous toxin prevents sodium channels inactivation, how would that affect the action potentials produced in the neurons of a poisoned mammal? Please explain using your understanding of action potential.
Read 586 times
1 Reply

Related Topics

Replies
wrote...
11 years ago
The nervous system is composed of billions of specialized cells called neurons. Efficient communication between these cells is crucial to the normal functioning of the central and peripheral nervous systems. In this section we will investigate the way in which the unique morphology and biochemistry of neurons makes such communication possible.

The cell body, or soma, of a neuron is like that of any other cell, containing mitochondria, ribosomes, a nucleus, and other essential organelles. Extending from the cell membrane, however, is a system of dendritic branches which serve as receptor sites for information sent from other neurons. If the dendrites receive a strong enough signal from a neighboring nerve cell, or from several neighboring nerve cells, the resting electrical potential of the receptor cell's membrane becomes depolarized. Regenerating itself, this electrical signal travels down the cell's axon, a specialized extension from the cell body which ranges from a few hundred micrometers in some nerve cells, to over a meter in length in others. This wave of depolarization along the axon is called an action potential. Most axons are covered by myelin, a fatty substance that serves as an insulator and thus greatly enhances the speed of an action potential. In between each sheath of myelin is an exposed portion of the axon called a node of Ranvier. It is in these uninsulated areas that the actual flow of ions along the axon takes place.

The end of the axon branches off into several terminals. Each axon terminal is highly specialized to pass along action potentials to adjacent neurons, or target tissue, in the neural pathway. Some cells communicate this information via electrical synapses. In such cases, the action potential simply travels from one cell to the next through specialized channels, called gap junctions, which connect the two cells.

Most cells, however, communicate via chemical synapses. Such cells are separated by a space called a synaptic cleft and thus cannot transmit action potentials directly. Instead, chemicals called neurotransmitters are used to communicate the signal from one cell to the next. Some neurotransmitters are excitatory and depolarize the next cell, increasing the probability that an action potential will be fired. Others are inhibitory, causing the membrane of the next cell to hyperpolarize, thus decreasing the probability of that the next neuron will fire an action potential.

The process by which this information is communicated is called synaptic transmission and can be broken down into four steps. First, the neurotransmitter must be synthesized and stored in vesicles so that when an action potential arrives at the nerve ending, the cell is ready to pass it along to the next neuron. Next, when an action potential does arrive at the terminal, the neurotransmitter must be quickly and efficiently released from the terminal and into the synaptic cleft. The neurotransmitter must then be recognized by selective receptors on the postsynaptic cell so that it can pass along the signal and initiate another action potential. Or, in some cases, the receptors act to block the signals of other neurons also connecting to that postsynaptic neuron. After its recognition by the receptor, the neurotransmitter must be inactivated so that it does not continually occupy the receptor sites of the postsynaptic cell.

Most neurotransmitters are specific for the kind of information that they are used to convey. As a result, a certain neurotransmitter may be more highly concentrated in one area of the brain than it is in another. In addition, the same neurotransmitter may elicit a variety of different responses based on the type of tissue being targeted and which other neurotransmitters, if any, are co-released. The integral role of neurotransmitters on the normal functioning of the brain makes it clear to see how an imbalance in any one of these chemicals could very possibly have serious clinical implications for an individual. Whether due to genetics, drug use, the aging process, or other various causes, biological disfunction at any of the four steps of synaptic transmission often leads to such imbalances and is the ultimately source of conditions such as schizophrenia, Parkinson's disease, and Alzheimer's disease. The causes and characteristics of these conditions and others will be studied more closely are as we focus specifically on the four steps of synaptic transmission, and trace the actions of several important neurotransmitters.

Chemical synapses are specialized junctions through which neurons signal to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body.
New Topic      
Explore
Post your homework questions and get free online help from our incredible volunteers
  1251 People Browsing
Related Images
  
 325
  
 3476
  
 169
Your Opinion
Which 'study break' activity do you find most distracting?
Votes: 741