× Didn't find what you were looking for? Ask a question
Top Posters
Since Sunday
r
5
m
5
h
5
r
5
t
5
B
5
P
5
s
5
m
5
c
5
c
4
4
New Topic  
fitnesschika fitnesschika
wrote...
Posts: 33
Rep: 0 0
11 years ago
What r the differences between " prokaryote & eukaryote cells?
could u pleae give a few more differences between em... thx
Read 1181 times
3 Replies

Related Topics

Replies
wrote...
11 years ago
a eukaryote cell has its nucleus bound in a membrane. prokaryotes don't
wrote...
11 years ago
The prokaryotes (pronounced /pro??kærio?ti?z/; singular prokaryote /pro??kæri?t/) are a group of organisms that lack a cell nucleus (= karyon), or any other membrane-bound organelles. They differ from the eukaryotes, which have a cell nucleus. Most are unicellular, but some prokaryotes are multicellular organisms. The word prokaryotes comes from the Old Greek pro- before + karyon nut or kernel, referring to the cell nucleus, + suffix -otos, pl. -otes; it is also spelled "procaryotes".[1]

The prokaryotes are divided into two domains: the bacteria and the archaea. Archaea are a newly appointed domain of life. These organisms were originally thought to live only in inhospitable conditions such as extremes of temperature, pH, and radiation but have since been found in all types of habitats.

Relationship to eukaryotes

A distinction between prokaryotes and eukaryotes (meaning true kernel, also spelled "eucaryotes") is that eukaryotes do have "true" nuclei containing their DNA, whereas the genetic material in prokaryotes is not membrane-bound. Eukaryotic organisms may, as in the case of amoebae, be unicellular or, as in the case of humans, be multicellular. The difference between the structure of prokaryotes and eukaryotes is so great that it is considered to be the most important distinction among groups of organisms. In 1977, Carl Woese proposed dividing prokaryotes into the Bacteria and Archaea (originally Eubacteria and Archaebacteria) because of the major differences in the structure and genetics between the two groups of organisms. This arrangement of Eukaryota (also called "Eukarya"), Bacteria, and Archaea is called the three-domain system replacing the traditional two-empire system. A criticism of this classification is that the word "prokaryote" itself is based on what these organisms are not (they are not eukaryotic), rather than what they are (either archaea or bacteria).

The cell structure of prokaryotes differs greatly from that of eukaryotes. The defining characteristic is the absence of a nucleus. Instead, the genomes of prokaryotes are held within an irregular DNA/protein complex in the cytosol called the nucleoid, which lacks a nuclear envelope.[2] Prokaryotes generally lack membrane-bound cell compartments: such as mitochondria and chloroplasts. Instead processes such as oxidative phosphorylation and photosynthesis take place across the prokaryotic plasma membrane.[3] However, prokaryotes do possess some internal structures, such as vacuole and cytoskeletons,[4][5] and the bacterial order Planctomycetes have a membrane around their nucleoid and contain other membrane-bound cellular structures.[6] Both eukaryotes and prokaryotes contain large RNA/protein structures called ribosomes, which produce protein. Prokaryotes are usually much smaller than eukaryotic cells.[1]

Prokaryotes also differ from eukaryotes in that they contain only a single loop of stable chromosomal DNA stored in an area named the nucleoid, while eukaryote DNA is found on tightly bound and organized chromosomes. Although some eukaryotes have satellite DNA structures called plasmids, these are generally regarded as a prokaryote feature, and many important genes in prokaryotes are stored on plasmids.[1]

Prokaryotes have a larger surface area to volume ratio giving them a higher metabolic rate, a higher growth rate and consequently a shorter generation time compared to Eukaryotes.[1]




Go to Wikipedia.org
More info's there...

It's the best information source!!
wrote...
11 years ago
Cells in our world come in two basic types, prokaryotic and eukaryotic. "Karyose" comes from a Greek word which means "kernel," as in a kernel of grain. In biology, we use this word root to refer to the nucleus of a cell. "Pro" means "before," and "eu" means "true," or "good." So "Prokaryotic" means "before a nucleus," and "eukaryotic" means "possessing a true nucleus." This is a big hint about one of the differences between these two cell types. Prokaryotic cells have no nuclei, while eukaryotic cells do have true nuclei.

Despite their apparent differences, these two cell types have a lot in common. They perform most of the same kinds of functions, and in the same ways. Both are enclosed by plasma membranes, filled with cytoplasm, and loaded with small structures called ribosomes. Both have DNA which carries the archived instructions for operating the cell. And the similarities go far beyond the visible--physiologically they are very similar in many ways. For example, the DNA in the two cell types is precisely the same kind of DNA, and the genetic code for a prokaryotic cell is exactly the same genetic code used in eukaryotic cells.

Some things which seem to be differences aren't. For example, the prokaryotic cell has a cell wall, and this animal cell does not. However, many kinds of eukaryotic cells do have cell walls.

Despite all of these similarities, the differences are also clear. It's pretty obvious from these two little pictures that there are two general categories of difference between these two cell types: size and complexity. Eukaryotic cells are much larger and much more complex than prokaryotic cells. These two observations are not unrelated to each other.

If we take a closer look at the comparison of these cells, we see the following differences:

Eukaryotic cells have a true nucleus, bound by a double membrane. Prokaryotic cells have no nucleus. The purpose of the nucleus is to sequester the DNA-related functions of the big eukaryotic cell into a smaller chamber, for the purpose of increased efficiency. This function is unnecessary for the prokaryotic cell, because its much smaller size means that all materials within the cell are relatively close together. Of course, prokaryotic cells do have DNA and DNA functions. Biologists describe the central region of the cell as its "nucleoid" (-oid=similar or imitating), because it's pretty much where the DNA is located. But note that the nucleoid is essentially an imaginary "structure." There is no physical boundary enclosing the nucleoid.


Eukaryotic DNA is linear; prokaryotic DNA is circular (it has no ends).


Eukaryotic DNA is complexed with proteins called "histones," and is organized into chromosomes; prokaryotic DNA is "naked," meaning that it has no histones associated with it, and it is not formed into chromosomes. Though many are sloppy about it, the term "chromosome" does not technically apply to anything in a prokaryotic cell. A eukaryotic cell contains a number of chromosomes; a prokaryotic cell contains only one circular DNA molecule and a varied assortment of much smaller circlets of DNA called "plasmids." The smaller, simpler prokaryotic cell requires far fewer genes to operate than the eukaryotic cell.


Both cell types have many, many ribosomes, but the ribosomes of the eukaryotic cells are larger and more complex than those of the prokaryotic cell. Ribosomes are made out of a special class of RNA molecules (ribosomal RNA, or rRNA) and a specific collection of different proteins. A eukaryotic ribosome is composed of five kinds of rRNA and about eighty kinds of proteins. Prokaryotic ribosomes are composed of only three kinds of rRNA and about fifty kinds of protein.


The cytoplasm of eukaryotic cells is filled with a large, complex collection of organelles, many of them enclosed in their own membranes; the prokaryotic cell contains no membrane-bound organelles which are independent of the plasma membrane. This is a very significant difference, and the source of the vast majority of the greater complexity of the eukaryotic cell. There is much more space within a eukaryotic cell than within a prokaryotic cell, and many of these structures, like the nucleus, increase the efficiency of functions by confining them within smaller spaces within the huge cell, or with communication and movement within the cell.
New Topic      
Explore
Post your homework questions and get free online help from our incredible volunteers
  896 People Browsing
Related Images
  
 47
  
 771
  
 119
Your Opinion
What percentage of nature vs. nurture dictates human intelligence?
Votes: 432