× Didn't find what you were looking for? Ask a question
  
  
Top Posters
Since Sunday
6
l
6
5
n
5
N
5
m
5
j
4
s
4
4
c
4
r
4
m
4
New Topic  
bio_man bio_man
wrote...
Administrator
Educator
Posts: 25302
A year ago
Derive:

\(y=\operatorname{arccot}x+\arctan \left(\frac{2+x}{1-2x}\right)\)

Before we start, recall:

\(\frac{d}{dx}\operatorname{arccot}x=\frac{-1}{1+x^2}\)
\(\frac{d}{dx}\arctan x=\frac{1}{1+x^2}\)

Now, let's return to the problem, the left side is easy, it becomes: \(\frac{dy}{dx}\), but the right side, specifically the tangent part requires the chain rule:

\(\frac{dy}{dx}=\frac{-1}{1+x^2}+\frac{1}{1+\left(\frac{2+x}{1-2x}\right)^2}\left(\frac{\left(2+x\right)\left(-2\right)-\left(1-2x\right)}{\left(1-2x\right)^2}\right)\)

The derivative is done. Now we clean it:

\(\frac{dy}{dx}=\frac{-1}{1+x^2}+\frac{1}{1+\left(\frac{2+x}{1-2x}\right)^2}\left(\frac{-4-2x-1+2x}{\left(1-2x\right)^2}\right)\)

Clean more:

\(\frac{dy}{dx}=\frac{-1}{1+x^2}+\frac{1}{1+\left(\frac{2+x}{1-2x}\right)^2}\left(\frac{-5}{\left(1-2x\right)^2}\right)\)

Clean more:

\(\frac{dy}{dx}=\frac{-1}{1+x^2}+\frac{-5}{\left[1+\left(\frac{2+x}{1-2x}\right)^2\right]\left(1-2x\right)^2}\)

If you want, you can combine more, but this is fine.
Read 276 times
The best way to say thank you is with a positive review:

  Click here to review us!

Related Topics

New Topic      
Explore
Post your homework questions and get free online help from our incredible volunteers.
Learn More
Improve Grades
Help Others
Save Time
Accessible 24/7
  111 People Browsing
 164 Signed Up Today
Your Opinion
Where do you get your textbooks?
Votes: 110

Related Images
 104
 106